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GENERAL INTRODUCTION 

Statement of Problem 

Over the previous twenty years, ternary molybdenum chalcogenides of the 

general formula M^MOgYg (M=ternary metal cation; Y=chalcogenide), known as 

Chevrel phases, have been extensively studied. Many of these compounds have 

been shown to be superconductors^ as well as ion conductors.^ "* However, more 

interest has developed concerning the use of these compounds as heterogeneous 

catalysts for hydrodesulfurization (HDS).®*® 

The importance of this catalytic process is evidenced by the fact that over 60 

million barrels of oil per day undergo HDS before further processing.^ ̂  The 

predominant sulfur species are thiophenes^ ^ which undergo desulfurization as shown 

in equation 

C4H4S ^ C4H, . H,S (1) 

The typical HDS catalyst is produced from molybdenum (or tungsten) oxides with a 

promoter metal such as cobalt (or nickel) supported on high surface area alumina (y-

AlgOa).^® The precursor material Is sulfided to form the "Co-Mo-S" catalyst which 

contains phases of MoSg and CogSg.^^ Recently, a number of Chevrel phase 

compounds have been shown to possess higher HDS activities than the commonly 
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used Co-Mo-S catalysts. The Chevrel phases were also found to be more selective 

catalysts since these materials exhibited less 1 -butene hydrogénation. '̂̂  

The largest drawback concerning these Chevrel phase catalysts is their low 

surface area (0.1-1.5 m^/g) relative to the supported Co-Mo-S catalysts on ^AlgOg 

(100 m^/g). It is commonly observed in these types of catalytic processes that the 

activity increases with surface area; therefore, there is a need for the development 

of supported Chevrel phases. 

The production of the Chevrel phases has generally involved solid state reactions 

at high temperatures (800-1200°C). This method has resulted in some difficulties in 

preparing stoichiometric, monophasic compounds. Further annealing or reaction at 

even higher temperatures has resulted in improvements in purity.^ ^ In order to 

produce supported Chevrel phase compounds, a variety of methods have been 

attempted including evaporation,^® sputtering,^^ and chemical vapor transport.^® 

Recently, though, lower temperature routes using polythiomolybdates and metal 

chlorides as solution precursors have been reported.^Also, the first example of 

an alumina-supported Chevrel phase compound has been published.^^ Likewise, a 

major focus of the McCarley research group has been on the preparation of MogSgLg 

cluster complexes as low temperature pathways to the Chevrel phases. 

A similarity was noted that both molybdenum (II) halides and the Chevrel phases 

contain hexanuclear cluster units, although the overall structures are quite different. 

The structure of the MOgYg unit is shown in Figure 1. This cluster consists of an 

octahedron of molybdenum atoms with eight triply bridging ligands (chalcogenide or 
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Molybdenum 

Bridging Ligand 

Terminal Ligand 

Figure 1. Structure of MogYgL^g cluster 
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halogen) capping each cube face. These bridging ilgands are noted by Schafer as 

T for "inner." The six terminal positions located at the vertices of the octahedron are 

noted as "a" for "ausser."^ The hexanuclear molybdenum clusters can combine in 

various ways as evidenced in Figure 2. The a-/ designation, which is evidenced in 

the Chevrel phases, signifies a ligand in the terminal position of one cluster that is 

shared through a bridging position of another cluster. 

This structural similarity led to the exploration of mixed halide-chalcogenide 

systems. The first molecular chalcohalide, [(pyH)g(l\/IOgClyS)Clg], was reported by 

Michel and McCarley.^® This MOgSOIy®"*" cluster was prepared by the sulfidation of 

molybdenum (II) chloride (MogCl̂ g)- Additional substitution of sulfur for chlorine into 

MogClig has resulted in a series of molecular complexes, MogS^CIg.^Ly, where x 

varies from 3 to Reactions which produce incomplete replacement of the 

chlorine have shown mixtures of cluster products that possess a wide range of x 

values. The fully sulfided cluster complexes are better characterized as evidenced 

by the single crystal structure solutions for the triethylphosphine and tetra-

hydrothiophene adducts.^®'̂ ® Concurrently, the triethylphosphine adduct has been 

reported by an unrelated synthetic procedure.®®'®^ 

The success in preparing hexamolybdenum sulfide cluster complexes through the 

sulfidation of molybdenum (II) chloride also led to the exploration of the tungsten 

analogues. This research has resulted in the preparation of structurally characterized 

adducts of the WgSgLg cluster unit where L is pyridine, triethylphosphine, and 

tetrahydrothiophene.®^ 
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Figure 2. Possible ways that ligands can be shared between two MogY gL^g 
cluster units 
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The focus of this project has been to further develop the understanding of these 

hexamolybdenum sulfide cluster complexes and move toward the overall goal of a 

low temperature route to the Chevrel phases. Areas of investigation have included 

the preparation and characterization of new nitrogen-donor cluster complexes, the 

better characterization of previously synthesized complexes, the subsequent 

deligation and reaction of these cluster complexes in attempts to form Chevrel phase 

compounds, and the preparation of ternary molybdenum sulfides which resemble the 

Chevrel phases. 

Explanation of Dissertation Format 

This dissertation consists of three papers. Each paper is formatted for publication 

in a technical journal and the cited references are found at the end of each paper. 

A General Summary follows the three papers. The references cited in the General 

Introduction and Review of Previous Work are found at the end of the dissertation. 
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REVIEW OF PREVIOUS WORK 

Chevrel Phases 

In 1971, Chevrel et al. reported the existence of a new series of ternary 

molybdenum sulfides.^® These materials, with the general formula M^^MogYg 

(Mssternary metal, Y=chalcogen, 0^^4), have been found In about 160 different 

compounds and solid solutions with over 45 different ternary metal cations (as shown 

In Figure 3).^ Chevrel phases have also been produced with both molybdenum and 

chalcogen substitution, where the metals (Nb, Ta, Re, Ru, Rh) replaced molybdenum 

(Mog.ĵ MxY8) and CI, Br, I, 0 were substituted for the chalcogen (MogYg.^^ 

Almost all of these compounds were synthesized directly from the ternary metal, 

chalcogen, and molybdenum (or binary chalcogenides) at 1000-1300°C with several 

annealings at 1000-1200®C. An exception Is the metastable MOgSg, which can only 

be prepared by indirect routes 

There are generally two classes of compounds among the Chevrel phases. The 

first class corresponds to M being a small cation (Cu, Co, Fe, Ni) where the cation 

concentration Is variable (Cu^MOgSg, 1.8^^4.0). The large M cations (Pb, Sn, RE), 

where the cation concentrations are equal to 1.0 or have a very narrow domain 

(Sn^MogSg, 0.9^^1.1), make up the second class. Substitution of a second metal 

cation for the large cation can occur and results In a wide range of solid solutions. 
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Figure 3. Periodic table showing the wide range of metals which can act as ternary cations in the 
Chevrel phase compounds 
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The first ternary molybdenum sulfide crystal structure was determined for 

NigMogSg^^ and the observation was made that nearly all of these compounds 

crystallize in a hexagonal-rhombohedral structure (R?) with 0^-90® and ap-6.5Â. 

However, when the ternary metal is small and the metal concentration increases, 

several phases do undergo a triclinic distortion (PÎ).^^ All of these structures are 

closely related to the MOgYg unit and can be described as a three dimensional 

network of interlinked MogYg clusters. As shown in Figure 1, the cluster unit is a 

molybdenum octahedron with each face capped by one chalcogen. The actual 

structure shows an elongation along the ternary axis which results in a distortion of 

the molybdenum octahedron. Alternately described, the molybdenum atoms are 

slightly outside the face centers of the sulfur cube. The clusters are linked together 

such that each of the six bridging chalcogens not located on the ternary axis (three

fold axis in R?) serves as a terminal ligand for one of the six neighboring clusters, as 

shown in Figure 4. The connectivity can be described as (MOgY2'Yg/2''®)Y6/2^ '• This 

strong linkage can be evidenced by the short, covalent Mo-Y intercluster distances 

of 2.4-2.6 Â which are nearly as short as the intracluster Mo-Y distances and can 

result in direct, though weak, intercluster Mo-Mo interactions (3.1-3.4 A). 

This arrangement of the MogYg units leaves cavities in the chalcogen network as 

indicated by "1" and "2" in Figure 5. The largest cavity (site 1), with approximately 

cubic shape, lies at the origin of the rhombohedral cell. Much smaller holes (site 2) 

are found on either side of the large cavity (site 1). These cavities are all 

interconnected and form infinite channels along the rhombohedral axes. The large 
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0 Molybdenum 

Chaloogenide 

Figure 4. Structure of the Chevrel phases showing four of the six neighboring 
clusters 
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ft 3.«iit 

Figure 5. a) The stacking of the MogSg units and Sg cubic sites along the 
threefold axis. Here, the Sn atoms are located at the cell origin, 

b) View of the projection of the SnMogSo structure on the hexagonal 
(11?0) plane. Cavities can be noticed in the chalcogen atom 
network where sites 1 and 2 are partially filled by ternary metals and 
the intercluster Mo-Mo bond occurs through site 3. 
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metal atoms exclusively fill site 1 to yield stoichiometric (x~1) compounds, while the 

smaller cations occupy both types of sites. This resulting partial occupancy yields 

non-stoichiometric compounds (x>1). 

The occupancy of these cavities by the ternary metal is the only overall structural 

difference between the binary and ternary Chevrel phases. Therefore, the ternary 

phase can be viewed as the insertion of metal cations into the binary lattice. This 

concept can be exhibited in the preparation of the metastable IVIOgSg phase via the 

acidic leaching of a small cation ternary molybdenum sulfide as shown in equation 

2.35,36 

M}(MogSg + 2x HCI —> MogSg + x H2 + x MCI2 /£) 
(M=Co, Cu, Fe, Ni) 

The high ionic mobility of the small ternary metal cations allows for the relative ease 

of chemical or electrochemical insertion and removal at room temperature. A variety 

of metastable ternary Chevrel phases can be prepared from the reaction with the 

binary MogSg phase as shown in equation 3. '̂̂  

X M + MogSg —> I\4j(MoqS0 (3) 

electrochemical - Li, Na, small cations at 25°C 
chemical - Li (n-BuLi) at 25°C 

Hg at SSO'C 

Electrochemical insertion of large cations into the binary MogSg phase has not 

succeeded; yet, thermal insertion is possible with higher temperatures (470°C) and 

long reaction times (1-3 weeks).®^ 
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The physical properties of the Chevrel phase compounds are greatly dependent 

on the ternary metal cation. This influence is the result of a transfer of valence 

electrons from the "ionic" metal to the electron-deficient, metallic MogYg component/ 

Band structure calculations"^®'̂ ^ on the Chevrel phases have indicated that the 

conduction band is made up of Eg cluster HOMO'S and lies just below the 24 electron 

gap. The calculations suggested that the addition of more electrons to the cluster via 

a higher cation concentration or higher cation charge would cause a decrease in the 

intracluster Mo-Mo distance. This trend was observed experimentally, as evidenced 

for PbQ g2M0gSg - 2.710 A and MogSg - 2.807 Â.^ Yvon has shown that the 

intercluster Mo-Mo distances increase with the addition of electrons via charge 

transfer.^ From band structure calculations, the conduction band of Eg character 

possesses 6-type symmetry (dĵ 2.y2) and results in very little interaction with 

neighboring clusters.^*^ Therefore, the addition of electrons causes strengthening of 

the intracluster bonding (cluster contraction) and concomitant lengthening of the 

intercluster Mo-Mo distances. 

Magnetic properties and the conductance of these materials have also been 

found to be dependent on the type of ternary metal cation that is present. Magnetic 

susceptibility studies have shown that the addition of a diamagnetic cation (e.g. 

Cu'̂ ,Pb^^) results in an overall diamagnetic species with a residual temperature-

independent paramagnetism. The addition of a magnetic metal cation (e.g. 

Fe '̂*",RE®"'") gives rise to Curie-Weiss behavior.®^ The ternary Chevrel phase 

compounds have all been found to be metallic conductors. The only materials 
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showing semiconductor behavior are the pseudobinary rhenium substituted 

molybdenum phases - Re^MOgYg/^ Even the 20 electron MogYg binary phases are 

metallic. This result agrees with the calculations which show that the conduction 

band is not purely Eg in character, but contains some chalcogenide p character and 

thus is not completely empty.^° Many of the Chevrel phases also show 

superconductivity. This occurrence is greatly dependent on the bonding between 

clusters.^ 

HDS Studies on Chevrel Phases 

The observed HDS activities permit the grouping of the sulfide Chevrel phases 

according to their cation sizes. The large cation compounds show high activities, 

while the small cation materials show much lower values. '̂̂  Table 1 compares 

several Chevrel phase compounds with Co-Mo-S (commonly used HDS catalyst) and 

MoSg. 

Table 1. Thiophene hydrodesulfurization activities after 10 hour reaction at 400°C 

% thiophene 
conversion 

HDS Rate 
(x10® mol/m^s) 

HOipMOfiSfl 2.20 11.23 

PbMoggSg 1.28 6.68 

SnMog^Sg 1.72 3.24 

COieMOgSa 0.47 1.02 

CO025-MO-S 0.77 2.92 

MoSg 0.76 0.92 
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The most active phases involve large cations (Ho, Pb, Sn) which are generally 

considered poor "promoters", while the compounds containing Co and Ni - the two 

most common HDS promoters - are among the least active Chevrel phases. This 

result has been explained in that the large cations have little mobility which produces 

structural stability and thus catalytic stability. '̂̂  The high mobility of the small 

cations, as observed in their high ion conductivity, allows these cations to "retreat" 

from the surface into the bulk structure. This movement makes the material less 

reactive and opens sites to surface oxidation and subsequent destabilization by 

forming M0S2. 

Alternative Routes to Chevrel Phases 

An initial report by Sergent focused on the high temperature reduction of alkali 

metal intercalated molybdenum disulfides under a hydrogen atmosphere."^^ Later, 

Behlock et al. described the hydrogen reduction of lithiated molybdenum disulfide at 

lOOC'C to prepare impure Lî MogSg.'*^ The platinum catalyzed reduction of MoSg 

with copper and nickel at 1000-1050°C was reported by Nanjundaswamy etal.^^ 

More recently, the lower temperature solution precursor method using polythio-

molybdates and metal chlorides has been explored as a pathway to the Chevrel 

phases. These solution precursors can then undergo hydrogen reduction at elevated 

temperatures as evidenced in equations 4 and 5.^®'̂ ° 

The reaction shown in equation 4 can also result in the preparation of Chevrel 

phase compounds with Pb, La, and Gd as the ternary metal cation. A MoSg impurity 
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phase is found in the final product of reaction 5. Subsequent work by Rabiller-Baudry 

et al. has resulted in the preparation of an alumina-supported Chevrel phase 

material.^^ This reaction also results in the production of a MoSg impurity phase. 

2 Cu(NH3)M03S9 + 9 Hg CuaMogSe + 10 HgS + 2 NHg (4) 

2 (NH4)2M03Si3 + 2 CuClg 2H2O + 18 Hg 
20h (5) 

CugMogSg + 4 NH3 + 4 HCI +18 HgS + 4 HgO 

Molecular Complexes of Hexamoiybdenum Chalcogenides and Chalcohalides 

Until quite recently, molecular complexes with the MogYg cluster unit seen in the 

Chevrel phases have not been found.^®"®^ Prior to the establishment of the 

molecular MogYg units, only molecular complexes of mixed sulfide-chloride clusters 

had been observed. The first molecular chalcohallde was reported by Michel and 

McCarley.^® The MogSCly cluster was prepared by the sulfidation of MogCl̂ g 

isolated as crystals of (pyH)3[(M0gSCIy)Clg] and (pyH)3[(MogSCIy)Clg]' SpyHCI. 

Since sulfur and chlorine are indistinguishable by x-ray diffraction, x-ray photoelectron 

spectroscopy (XPS) was used to determine that the sulfur atom occupied a bridging 

position in the cluster. The corresponding average intramolecular Mo-Mo bond 

distances of these two structures were equivalent (2.610 Â) and were found to agree 

quite well with values observed for the isoelectronic MogClg'̂ ^ cluster of MogCl̂ g 

(2.613 and the MogSCl/+ unit of MOgCI^^S (2.615 These clusters which 
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possess 24 electrons for Mo-Mo bonding are all close to the estimated Mo-Mo single 

bond distance of 2.614 Â. 

Michel also reported the crystal structure of what was believed to be 

MogSgCl2(py)6. '̂̂  Thb compound also showed no evidence for ordering of the 

sulfides and chlorides. The average intracluster Mo-Mo distance of 2.634 Â was 

close to the value estimated for a 22 electron cluster. Additional sulfidation of 

M06Cii2 has yielded a series of mixed molybdenum chalcohalides with the general 

formula MOgSĵ Clg.ĵ Ly (3ô(^, y-variable) where incomplete sulfur substitution often 

leads to a mixture of cluster products.^^"^ 

Recently, Saito et al. published the crystal structure of MogSg(PEtg)g which was 

prepared by the reductive dimerization of trimeric M03S4 clusters 

MO3S7CI4 + 8 PEtg M03Cl4(PEt3)5 + 3 SPEtg 
(6) 

2 M03S4Cl4(PEt3)5 + 4 Mg S> MogS8(PEt3)g + 4 MgClg + 4 PEt3 

The selenide analogue has been prepared by the same method, as well as, a report 

on the one electron reduction to form [PPN][MogYg(PEt3)g] (Y=S,Se; 

PPN=(Ph3P)2N).3^ 

Concurrently, McCarley et al. reported on the successful preparation of a series 

of molecular compounds with the MogSg cluster unit via sulfidation of MOgCl̂ g-^ '̂̂ ^ 

Adducts of pyridine (py), propylamine (PrNHg), triethylphosphine (PEt3), and 

tetrahydrothiophene (tht) were prepared and the structures of the phosphine and 

thiophene complexes were determined. Either route resulted in an identical 



www.manaraa.com

18 

Mo0S3(PEt3)e complex as indicated by the same structure and bonding. The 

sulfidation of the MogCI.|2 cluster has a distinct advantage as a general preparation 

technique due to the range of adducts which can be prepared. Another advantage 

lies in the relative stability of the metal cluster during the sulfidation, as evidenced by 

very little, if any, cluster decomposition. The presence of the coordinating ligands 

appears to help stabilize the MogSg cluster unit. 

The synthetic route used to prepare the completely sulfided cluster unit is shown 

below in equation 7. 

1 MoeCHs . 8 NaSH . 4 NaOBu MeOĵ  MoeS^CKpy), 

M06S7CI(py)x . 2 NaSH MjOH^ Mo«S«(pyU 

As shown in the reactions below, other adducts can be prepared from this pyridine 

complex via ligand exchange. From the crystal structures of the tetrahydrothiophene 

and triethylphosphine adducts, it is observed that the MogSg cluster units are isolated 

with no intercluster interactions. The average intracluster Mo-Mo bond distances are 

2.6584 Â for the phosphine adduct and 2.640 Â for the thiophene adduct. These 

bond lengths are quite close to the value of 2.662 Â which is estimated for a 20 

electron octahedral cluster. 

Mo6S8{py)x + 6 PEtg M0gSg(Pet3)g + x py 

MogSg(py)x + xs PrNHg -> M0gSg(PrNH2)y + x py 

MogS8(PrNH2)y + xs tht MogSg(tht)g + x py 



www.manaraa.com

19 

Molecular Complexes of Hexatungsten Chalcogenldes 

Following the success in preparing the molecular MogSg cluster unit, similar 

attempts were made to prepare the analogous tungsten complexes.^^ Complete 

substitution of the sulfide for chloride was achieved by using the stoichiometry of 1 

WgCl̂ g: 12 NaSH: 6 NaOBu in neat pyridine. The resulting powder was poorly 

crystalline. However, single crystals of WgSg(py)g could be prepared by higher 

temperature (200*C) heating in pyridine. Ligand displacement of the pyridine adduct 

by triethylphosphine and tetrahydrothiophene produced crystalline molecular 

complexes also with the general formula WgSgLg (L=py, PEtg, tht). 
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PAPER 1. 

PREPARATION AND CHARACTERIZATION OF THE MOLECULAR 

MOgSgLg CLUSTER COMPLEXES 
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INTRODUCTION 

Ternary molybdenum chalcogenldes of the general formula M^MogYg (M=ternary 

metal cation; Y=chalcogenide), known as Chevrel phases, have been extensively 

studied and have been shown to possess interesting physical and chemical 

properties J These properties are related to the structures of the compounds which 

consist of HOgYg clusters interlinked to form three-dimensional networks. The 

production of the Chevrel phases has generally involved solid state reactions at high 

temperatures (1000-1300°C). Recently, though, lower temperature routes using poly-

thiomolybdates and metal chlorides as solution precursors have been reported/'̂  

Likewise, a major focus of the McCarley research group has been on the preparation 

of MgSgLg (M = Mo, W) cluster complexes as low temperature precursors to the 

Chevrel phases.®"^® 

The first step toward the synthesis of the Chevrel phases involved the preparation 

of these molecular cluster intermediates. MogCI.|2 was chosen as the starting 

complex since it is structurally similar to the Chevrel phases. This similarity is 

evidenced in that both materials possess a MogVg octahedral cluster unit. Complete 

substitution of sulfide for chloride was successfully accomplished without cluster 

decomposition via the reaction shown in equation 1.^^ Further reaction of this 

pyridine complex has led to the identification and structural characterization of the 

triethylphosphine and tetrahydrothiophene adducts.®"^^ Concurrently, the triethyl-

phosphine adduct was prepared by another synthetic route. '̂̂ -^® Similar complexes 
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have also been prepared for the tungsten cluster unit - WgSgLg (L = pyridine, 

triethylphosphine, tetrahydrothiophene)J ® 

1 MoeClij . 8 NaSH • 4 NaOBu MoeSjCKpy), 

(1) 

MosSyCKpy), . 2 NaSH MogSa(pyU 

This paper will discuss the further developments in the characterization of the 

known MOgSgLg cluster adducts. Secondly, the preparation and characterization of 

several nitrogen-donor complexes will be explored. The primary ligands that will be 

discussed are pyridine, propylamine, pyrrolidine, and piperidine. 
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EXPERIMENTAL 

Materials 

Ttie reagents and products involved in this work appear to be air and moisture 

sensitive. Therefore, special precautions were taken to ensure the maintenance of 

a dry, inert atmosphere. All manipulations were performed by the use of an inert 

atmosphere drybox, a high-vacuum manifold, and Schlenk techniques, unless 

othen/vise stated. All glassware was thoroughly dried prior to use by its placement 

in an oven at 140°C for at least 4 hours. 

M06CI12 was prepared by the high temperature comproportionation method 

described by Koknat et a/.^® Sodium hydrosulfide (NaSH) was prepared by the 

method described by Brauer.^^ In this method, hydrogen sulfide gas was bubbled 

through a solution of sodium ethoxide in ethanol and the desired product precipitated 

by the addition of diethyl ether. Sodium butoxide (NaOBu) was prepared by the 

reaction of n-butanol with sodium metal, and used as the solid. 

All solvents were purified and dried prior to use. Also, the solvents were 

deoxygenated by use of the freeze-thaw process: freeze to liquid nitrogen 

temperature, evacuate the gaseous material, and then thaw. This process was 

repeated three times prior to the distillation of the purified solvent onto 3 or 4 Â 

molecular sieves and storage under vacuum or a nitrogen atmosphere. Pyridine, 4-

methylpyridine, n-propylamlne, pyrrolidine, piperidine, tetrahydrothiophene, diethyl 
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ether, triethylphosphine, and benzonitrile were purified by refluxing over calcium 

hydride for at least 4 hours. Toluene and dichloromethane were refluxed over 

phosphorus pentoxide. Without heating, ethanol and 1-butanol were stirred with 

sodium metal. Methanol was dried by refluxing over sodium methoxide. When used, 

the solvents were vacuum distilled or syringed under a flowing nitrogen gas 

atmosphere. 

Analytical Procedures 

Molybdenum was determined gravimetrically either as the trioxide (if ternary metal 

cations were not present) or as the 8-hydroxyquinolate. For the trioxide method, 

samples were placed in tared crucibles and decomposed initially with dilute (3M) nitric 

acid. Concentrated nitric acid was then added to ensure complete oxidation and the 

samples evaporated to dryness. After ignition in a muffle furnace at 520°C, the 

resulting MoOg solid was weighed. For the 8-hydroxyquinolate method,^® the 

samples were dissolved in basic solutions with the aid of hydrogen peroxide. The 

solutions were then neutralized with dilute sulfuric acid to pH = 4-6. Solutions of 5% 

EDTA and acetic acid/ammonium acetate buffer were added. The analyte, 

Mo02(ONCgHg)2, was precipitated by the addition of S-hydroxyquinoline solution and 

filtered through tared filters. After washing with hot distilled water, the materials were 

dried to constant weight at 140*C. 

Chlorine was determined by the potentlometric titration of neutralized solutions 

with a standardized silver nitrate solution. A silver/silver chloride electrode was used 
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as the working electrode and a silver electrode as the reference. The endpoint was 

determined by using the second derivative method. 

Additional microanalyses for carbon, hydrogen, nitrogen, and sodium were 

obtained from Oneida Research Services.^® The C,H,N analyses were found to be 

lower than expected based on the molybdenum analyses. This problem could arise 

from a loss of ligand prior to the analyses or from incomplete combustion since 

samples known to have excess ligand like pyrrolidine were always found to be ligand-

deficient. Therefore, less confidence was placed in these elemental percentages. 

Physical Measurements 

Infrared spectroscopy 

Infrared spectra (4000-200 cm"^) were obtained by using an IBM IR/98 Fourier 

Transform Infrared Spectrometer and a Bomem MB-102 Fourier Transform Infrared 

Spectrometer manufactured by Hartmann and Braun. Samples were prepared as 

Nujol mulls and the mulls were pressed between cesium iodide plates. The sample 

chamber was continuously purged with dry, compressed air and reference spectra 

were collected in the empty chamber. 

Raman spectroscopy 

Raman spectra were obtained with the help of Jeanne Wynn in Professor 

Therese Cotton's group. A Spex Triplemate spectrometer with a Princeton Applied 

Research Corp. (PARC) intensified SiPD detector cooled to -40°C was used to record 
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the spectra. The excitation source was a Coherent Ar^ 200 series laser at the 

wavelength of 514.5 nm and the scattered radiation was collected in a backscattering 

geometry. The laser power at the sample was approximately 30 mW and the 

Integration time was 200 s. The Raman spectra were obtained at room temperature 

from solid samples packed in capillary tubes. 

Nuclear magnetic resonance spectroscopy 

Proton spectra were collected on the Nicolet NT-300 and Unity 500 MHz 

instruments. The samples were handled in an inert atmosphere solvent drybox and 

dissolved in deuterated benzene just prior to the NMR study. Two-dimensional NMR 

experiments - double quantum correlation spectroscopy (DQCOSY) and Nuclear 

Overhauser Effect spectroscopy (NOESY) - were performed on the Unity 500 MHz 

Instrument by David Scott. 

X-ray photoelectron spectroscopy 

XPS spectra were collected by James Anderegg at room temperature with a 

Physical Electronics Industries 5500 multitechnique surface analysis system. This 

system was equipped with a hemispherical analyzer, a toroidal monochromator, and 

multichannel detector which sampled a 2 mm^ area. The samples were placed on 

an indium substrate and excited with monochromatic AI K-a radiation (1486.6 eV) at 

the power of 300 W. The binding energies were calibrated with C 1s = 284.6 eV. 
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Ultraviolet-Visible spectroscopy 

Electronic spectra were collected on a Shimadzu UV-2101PC UV-VIS scanning 

spectrophotometer located in Professor James Espenson's group. The samples were 

dissolved in toluene under a Ng gas purge and examined over a 200-800 nm range. 

A toluene blank was used as the background and subtracted from the sample 

spectra. 

X-ray powder diffraction 

An Enraf Nonius Delft FR552 Guinier camera was used to obtain x-ray powder 

diffraction patterns. A General Electric XRD-5 generator with an AEG fine focus tube 

and a copper target were used to generate the x-rays. Air-sensitive samples were 

ground thoroughly and then placed between strips of cellophane tape in the drybox. 

Powdered NBS silicon was added as an internal standard. 

Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) 

This technique was employed to obtain qualitative elemental information on the 

sample. A Cambridge 8-200 Scanning Electron Microscope coupled to a Tracor 

Northern Micro Z-ll Energy Dispersive Spectrometer with a beryllium window was 

used. The samples were placed onto a metal disk backed with double-stick Scotch 

tape and then sputter-coated with gold or carbon. The molybdenum L series and 

sulfur K series peaks fell at almost identical energies and thus were not resolvable 

by this technique. 
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Synthetic Procedures 

The general procedure for the preparation of the MOgSg cluster unit was 

developed by Laughlin.^® This preparation involved the reaction of MogCl̂ g» NaSH, 

and NaOBu (1 ;8:4) to produce an incompletely sulfided (-1 CI remaining) cluster. 

Upon further reaction with two equivalents of NaSH, the MogSg cluster compound 

could be prepared. This two-step synthesis required extended MeOH extractions to 

remove the NaCI by-product after each reaction step. Therefore, modifications of this 

general procedure were explored in order to better facilitate a shorter preparative 

route. 

Reactions with 1:10:5 stolchlometry 

A typical reaction involved placing 4.00 g MogCI.|2 mmol), 2.24 g NaSH (40 

mmol), and 1.92 g NaOBu (20 mmol) into a 500 mL reaction flask. Under a nitrogen 

flow, 60 mL of 1-butanol and 20 mL of pyridine (py) were syringed into the reaction 

flask. The mixture was then refluxed for 2-4 days. After cooling, a dark brown solid 

and faint colored solution were separated by filtration. The solid was extracted with 

methanol for several days and dried in vacuo. Chlorine analyses for several of these 

reactions produced variable results of zero to one chlorine remaining. For the 

incompletely substituted products, further reaction with NaSH resulted in the desired 

product. Infrared spectra were obtained. 
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Reactions with 1:12:6 stoichiometry 

The typical procedure is similar to the 1:10:5 reaction stated previously. In this 

preparation, 4.00 g IVIOgCl̂ g (4 mmol), 2.69 g NaSH (48 mmol), and 2.30 g NaOBu 

(24 mmol) were placed in the reaction flask and 60 mL of 1-butanol and 15 mL of 

pyridine were added by syringe. The resulting brown/black solid showed no evidence 

of CI by chlorine analyses. However, further study of this product by XPS indicated 

that sodium was present. This was confirmed by using SEM-EDS. Also, it was 

discovered that the pyridine and methanol contents were quite variable from one 

reaction to another. The pyridine-deficient (PD) product was found to be pyrophoric, 

insoluble in non-coordinating solvents, and amorphous to x-rays. Infrared spectra 

and elemental analyses were obtained. Analyses are given for the product of one 

procedure - Calc. for Nag gl\/l0gSg^(py)2(k/le0H)^ : Na, 1.75%; Mo, 54.64%; C, 

12.54%; H, 1.34%; N, 2.66%. Found : Na, 1.73%; Mo, 54.55%; C, 12.67%; H, 

1.44%; N, 2.27%. 

Reaction of Na2ylVl0QSg^y(py)x with pyridine 

The PD compound was reacted in neat pyridine either at room temperature or 

under reflux conditions to produce a higher pyridine-coordinated material. A typical 

preparation involved the placement of 1.00 g of the pyridine-deficient compound into 

a 100 mL reaction flask and the syringing of 30 mL of pyridine onto the solids under 

a nitrogen flow. The mixture was refluxed for 1-2 days or stirred for 3-4 days and the 

result, after filtration, was a dark brown solid and a brownish solution. Infrared 
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spectra, Raman spectra, powder x-ray diffraction data and eiementai analyses were 

obtained for the dark brown powder. The solid was found to contain sodium as 

detected by XPS. Analyses for the product of one procedure - Gale, for 

Nai.5lV:0QS8 y5(py)g: Na, 2.53%; Mo, 42.16%; C, 26.39%; H, 2.21%; N, 6.16%. 

Found: Na, 2.15%; Mo, 41.88%; C, 23.42%; H, 2.00%; N, 5.41%. 

Crystals were grown from the brownish solution by reducing the volume and 

placing it in the refrigerator for several days. 

Reaction of Na2ylVl0gSg^y(py)^ with 4-methylpyridine 

The PD compound (0.5 g) was placed in a 100 mL reaction flask and 

approximately 25 mL of 4-methlypyridine (4-Mepy) was vacuum-distilled onto the 

solid. The mixture was refluxed for 2 days and, upon filtering, a dark brown solid and 

light brown filtrate resulted. The solid, which was the major product, was insoluble 

in non-coordinating solvents. Infrared, Raman, and XPS spectra were obtained. 

Analyses for the product of one procedure - Gale, for Na^ jMogSg gg(4-Mepy)g: Na, 

2.87%; Mo, 42.20%; G, 26.42%; H, 2.59%; N, 5.13%. Found: Na, 2.77%; Mo, 

41.55%; G, 24.89%; H, 2.43%; N, 4.48%. 

Extended reactions at reflux conditions (4-5 days) resulted in a brown/black solid 

which was highly ligand deficient as evidenced by its infrared spectra and elemental 

analyses. Yet, this material could be extracted with neat n-propylamine to produce 

a black, "glassy" solid. Infrared spectra showed only propylamine coordination. 
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Ligand replacement reactions of the 4-methylpyridlne adduct 

A) Pyridine. The 4-Mepy adduct (0.10 g) was reacted with neat pyridine (25 mL) 

at room temperature for 2 days and produced a brown solid. Infrared spectra were 

obtained and showed oniy pyridine coordination. 

B) Propylamine. The 4-Mepy adduct (1.00 g) was extracted with neat n-

propylamine (30 mL) for approximately 1 day and resulted in complete dissolution of 

the solid. Upon drying under dynamic vacuum, a black, "glassy" solid was produced. 

Infrared spectra were obtained and showed only propylamine coordination. 

C) Triethyiphosphine. The 4-Mepy adduct (0.10 g) was reacted with an excess 

of triethyiphosphine (0.20 mL) in toluene (25 mL) at reflux for 1 day and resulted in 

dissolution of the solid. Upon drying, a crystalline solid was obtained and its infrared 

spectra showed only triethyiphosphine (PEtg) coordination. 

D) Pyrrolidine. The 4-Mepy adduct (0.20 g) was reacted with neat pyrrolidine 

(20 mL) at reflux for 2 days and resulted in complete dissolution of the solid. After 

drying, a red solid was obtained and its infrared spectra showed only pyrrolidine (pyrr) 

coordination. A 1-day reaction under reflux resulted in incomplete substitution as 

evidenced by the infrared spectra showing both 4-methylpyridine and pyrrolidine 

coordination. 

Reaction of Na2yM0gSg^y(py)x with n-propyiamine 

The PD compound was readily converted by extraction with neat n-propyiamine. 

A typical preparation involved the placement of 2.0-3.0 g of Na2yMoeSQ^y(py)^ onto 
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the frit of an extractor and the distillation of 25-30 mL of n-propylamine (PrNHg) into 

the receiving flask. After approximately 4-6 hours of extraction, the solid completely 

dissolved and provided a dark black/brown solution. After drying under dynamic 

vacuum, a black, "glassy" solid was obtained. This product, MogSg(PrNH2)y, showed 

variable propylamine content which was dependent upon amount of drying. Also, the 

propylamine adduct was amorphous to x-rays and insoluble in non-coordinating 

solvents. The compound was identified by infrared, Raman, and XPS spectra. SEM-

EDS on the product indicated an absence of sodium, thus it was reasoned that the 

propylamine insoluble sodium sulfide by-product did remain on the frit after the 

extraction. 

Reaction of IVl0gSg(PrNH2)y with pyrroiidine 

A typical preparation involved the placement of 0.50 g of the propylamine adduct 

into a 100 mL reaction flask and the vacuum distillation of 25-30 mL of pyrrolidine 

(pyrr) onto the solids. After refluxing for 1 day or stirring at room temperature for 3 

days, the solid completely dissolved and a red/brown solid was obtained upon drying. 

The pyrrolidine content was found to be variable depending upon reaction conditions. 

Likewise, x-ray powder diffraction results indicated variability - from being amorphous 

to microcrystalline in nature. The pyrrolidine adduct was soluble in toluene and 

benzene, infrared, Raman, UV-VIS, XPS, and NMR spectra and elemental analyses 

were obtained. Anal. Found: (RT) IVIo, 47.55%; C, 20.74%; l-i, 3.94%; N, 5.60%; 

(reflux) IVIo, 43.76%; C, 19.52%; H, 3.86%; N, 5.26%. 
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A small quantity of single crystals were grown by layering the solution with diethyl 

ether and allowing it to stand at room temperature for several days. 

Reaction of MogSg(PrNH2)y with piperidlne 

A typical preparation involved the placement of 0.3-0.5 g of the propylamine 

adduct into a 100 mL reaction flask and the vacuum distillation of 25-30 mL of 

piperidine (pip) onto the solids. After refluxing for 1 day or stirring at room 

temperature for 3 days, the solid completely dissolved and resulted in a red solid 

upon drying. The piperidine content was found to be variable depending upon 

reaction conditions. Likewise, x-ray powder diffraction results indicated variability -

from being amorphous to microcrystalline in nature. The piperidine adduct was 

soluble in toluene, benzene, and chlorobenzene. Infrared, Raman, UV-VIS, XPS, and 

NMR spectra and elemental analyses were obtained. Anal. Found: (reflux) Mo, 

39.39%; C, 25.73%; H, 5.15%, N, 5.70%. 

Single crystals were grown by slowly reducing the volume of the solution and 

allowing it to stand at room temperature for several days. 

The reaction of a larger quantity of the propylamine adduct (1.0-1.5 g) with 50-65 

mL of neat piperidine, under the same conditions as discussed previously, resulted 

in the formation of a dark red solid and red/brown solution upon filtration. After drying 

under dynamic vacuum, the infrared spectra of both products indicated only piperidine 

coordination. The red solid could be rapidly dissolved in neat piperidine. Elemental 

analyses and NMR spectra indicated a large amount of uncoordinated piperidine. 
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Anal. Found: Mo, 29.39%; C, 34.06%; H, 6.21%; N, 7.52%. Range of values found 

for molybdenum analyses of products from different experiments: 29.26-34.18%. 

Reaction of M0gSg(PrNH2)y with tetrahydrothiophene 

Previously, this reaction was conducted by refluxing for 1 day and resulted in a 

small yield of crystalline MogSg(tht)g and a brown solid as the major fraction.^ 

Attempts to improve the yield of the crystalline adduct were made by varying the 

reaction conditions. A typical reaction involved using 0.30-0.50 g of M0gSg(PrNH2)y 

and 30 mL of neat tetrahydrothiophene (tht). 

Stirring at room temperature for 3-15 days resulted in mixed PrNHg/tht products 

as identified by their infrared spectra. Extraction of the propylamine adduct with tht 

resulted in complete dissolution and, upon drying, produced a brown solid showing 

tht coordination; however, very little crystalline material was obtained. Refluxing for 

2 hours resulted in a brown solid on the frit and red solid from the solution after 

filtration and drying under dynamic vacuum. Longer reaction times (4 hours -1 day) 

led to larger amounts of the insoluble brown solid. 

This brown solid was found to be insoluble in non-coordinating solvents and 

amorphous to x-rays. Infrared, Raman, and XPS spectra and elemental analyses 

were obtained. Anal. Found: Mo, 47.72%; C, 13.19%, H, 2.18%. The range of 

values found for molybdenum analyses of products from different experiments: 46.48-

48.03%. The crystalline solid was identified by its infrared spectra and further studied 

by XPS and Raman spectroscopy. 
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Ligand replacement reactions of the tetrahydrothiophene adduct 

A) Propylamine. The tht adduct (0.2-0.4 g) was reacted with neat n-propylamine 

(25-30 mL) at reflux for 1 day or room temperature for 5 days and resulted in 

complete dissolution of the solid. After drying, the blackish product showed only 

propylamine coordination in its infrared spectra. 

B) Pyridine. The tht adduct (0.6 g) was reacted with neat pyridine (25 mL) at 

room temperature for 3 days and resulted in a brown/black solid for which the infrared 

spectra showed only pyridine coordination. 

C) Triethylphosphine. The tht adduct (0.20 g) was allowed to react with 6 

equivalents of triethylphosphine (0.14 mL) in dichloromethane (25 mL) at room 

temperature for 1 day and resulted in complete dissolution of the solid. The black 

product showed only triethylphosphine coordination in its infrared spectra. 

Reaction of IVl0gSg(PrNH2)y with thiophene 

Previously, the reaction between the pyridine adduct and thiophene was 

studied.^^ In this reaction, 0.50 g of M0gSg(PrNH2)y was placed into a 100 mL 

reaction flask and approximately 40 mL of thiophene distilled onto the solid and 

refluxed for 2 days. The resulting brownish powder showed only propylamine 

coordination in the infrared spectra and indicated that no reaction had occurred. 
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Reaction of M0gSg(PrNH2)y with various nitrile iigands 

Attempts were made to prepare a complex with more labile Iigands by forming 

nitrile adducts. A variety of nitriles were explored including acetonitrile, propionitrile, 

butyronitrile, and benzonitrile. The reactions with acetonitrile, propionitrile, and 

butyronitrile were studied in neat nitrile and with the addition of 

trifluoromethanesulfonic acid. A typical reaction involved placing 0.3 g of 

MogSg(PrNH2)y into a 100 mL reaction flask and the distillation of 30 mL of nitrile 

onto the solid. When used, the acid (0.15 mL, 6 equiv.) was added by syringe and 

the mixture was refluxed for 1-2 days. The result, upon filtration, was complete 

dissolution of the solid and upon drying an oily residue often resulted. This residue 

could be broken by the addition of toluene and a brownish-black solid was obtained. 

Infrared spectra were obtained on the products. These nitrile reactions without the 

addition of acid exhibited only propylamine coordination as observed in the infrared 

spectra and the addition of the acid resulted in coordination of triflate anions 

(CF3SO3') instead of the desired nitrile. The reaction of benzonitrile in toluene 

produced a mixed nitrile/propylamine complex. 

A typical reaction involved the placement of 0.5 g of MogSg(PrNH2)y into a 100 

mL reaction flask and the distillation of approximately 10 mL of benzonitrile (PhCN) 

and 25 mL of toluene onto the solid. The mixture was refluxed for 2-3 days and, 

upon filtering and vacuum drying, a blackish solid was recovered. The product was 

identified by its infrared spectra and elemental analyses were obtained. Anal. Found: 

Mo, 43.96%; C, 22.02%; H, 2.12%; N, 3.89%. 
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X-ray Structure Determinations 

The x-ray data collection and structure solutions were carried out by Victor G. 

Young, Jr. at the iowa State Molecular Structure Laboratory on a Siemens P4/RA 

diffractometer. Refinement calculations were performed on a Digital Equipment Corp. 

Micro VAX 3100/76 computer using SHEUŒL-PLUS direct methods programs.̂  ̂

The crystallographic data are summarized in Table 1. 

Structure determination for IVl0gSg(py)g 1.65 py 

Single crystals were grown from the reaction of the pyridine-deficient compound 

with neat pyridine at reflux for 1-2 days. The obtained filtrate was placed in a 

refrigerator for several days and crystals slowly formed. Crystals were found of two 

different morphologies - irregularly shaped brown chunks and brown cubes. The vast 

majority of crystals observed were chunky in nature. A large, irregularly shaped 

chunk crystal was quickly selected and, while in oil, the edges trimmed to a box-like 

shape. The crystal, with dimensions of 0.35 x 0.35 x 0.15 mm, was then attached 

to the tip of a glass fiber and mounted on the Siemens P4/RA diffractometer for data 

collection at -50 ± 1 °C. The cell constants for data collection were determined from 

reflections found by a rotation photograph. Graphite-monochromated Cu radiation (k 

= 1.54178 Â) was employed to collect data in the range 4° < 20 < 115°, using the 0-

20 scan technique. Three standard reflections, measured every 97 reflections, 

showed some intensity variation during data collection which led to the application of 

a correction based on the decay. A total of 7110 unique reflections were collected 
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Table 1. Summary of crystal data, intensity collection, and structure refinement 

compound M06S8(py)6-1.65py Mo6S8(py)6-2py Mo6S8(P'P)6^P'P MogSg(pyrr)g1pyrr 

formula C 38.25'̂ 38.25^6'̂ 7.65®8 ^40'̂ 40^°6'̂ 8®8 (^65^143^6^13^8 ^28*^63^°6*^7^8 
formula weight 1437.2 1464.9 1939.1 1330.0 
crystal system triclinic cubic tetragonal tetragonal 
space group PT Pa3 1? W /̂a 
a, Â 11.580 (5) 16.994 (2) 19.421 (2) 29.933 (4) 
b.Â 12.170 (6) - - -

c, A 21.995(9) - 22.584 (3) 23.697 (8) 
a, deg 75.94 (3) 90 90 90 
p. deg 88.94 (3) 90 90 90 
Y, deg 62.61 (3) 90 90 90 
V.A  ̂ 26574. (2) 4908.2 (12) 8518. (2) 21231. (11) 
Z 2 4 8 16 
calc. density, g/cm  ̂ 1.794 1.980 1.510 1.574 
F(000) 1396 2860 4008 9792 
crystal size, mm 0.35 X 0.35 X 0.15 0.12x0.12x0.12 0.50 x 0.40 X 0.35 0.45 X 0.40 X 0.12 
abs. coeff., mm'̂  14.479 1.865 1.096 14.375 
diffractometer Siemens P4/RA Siemens P4/RA Siemens P4/RA Siemens P4/RA 
X, A 1.54178 0.71073 0.71073 1.54178 
temperature, K 223 228 223 213 
scan method 8-28 8-28 8-28 8-28 
20 range, deg 4-115 4-50 4-60 4-115 
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compound M06S8(py)6-1.65py M06S8(py)6-2py M06S8(pip)6-7pip M06S8(pyrr)6-1pyn' 

range of h.k.l 0-12,-11-13,-23-23 0-20,0-20,-20-0 0-27,0-27,0-31 0-32,0-32,0-25 
total data 7531 4858 6726 7686 
unique data 7110 1460 6713 7147 
data observed  ̂ 3332 695 5008 4168 
param. refined 470 100 402 326 
data/parameter 7.1 6.9 12.5 12.8 
abs. correction semi-empirical N/A semi-empirical semi-empirical 
trans, factors 0.5323-1.0000 N/A 0.7307-0.8647 0.0001-1.0000 

0.0750 0.0381 0.0317 0.0675 

Rw' 0.0941 0.0351 0.0366 0.0911 
quality of fit" 3.09 0.99 1.24 2.91 
largest shift, esd 0.310 0.030 0.122 2.161 
diff. peaks, e/Â  ̂ +2.10, -1.70 +0.51, -0.63 +0.75, -0.74 +1.25, -0.73 

^Reflections are considered as observed when F > 6.0 a(F) 

"R = 11 IFol-IFol |/Z|F,| 
% = 11 ® (|Fol-|F.|f / Z <0 |F„|̂  ]'«;«>= 1/<j® {|F„|} 
<> Quality of fR = [ S (0 {|F,|-|FJ)2 / { l'« 
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and 3332 of them were considered as observed with F > 6.0 a(F). Lorentz and 

polarization connections were applied. A series of azimuthal reflections were collected 

in order to apply a semi-empirical absorption correction.̂ ® The agreement factor for 

the averaging of reflections was 6.2%. 

The triclinic space group PT was chosen based on the lack of systematic 

absences and intensity statistics. However, the mosaic spread of these crystals 

indicated that solvent loss might have contributed to a poorer than average specimen 

for data collection. The unit cell parameters were a = 11.580 (5) Â, b = 12.170 (6) 

A, c = 21.995 (9) A, a = 75.94 (3)°, p = 88.94 (3)", y = 62.61 (3)°, and Z = 2. The 

lattice was triclinic, but also appeared to be pseudo C-centered monocllnic with a = 

21.615 A, b= 11.580 A, c = 21.995 A, a = 88.94°, p = 105.30°, and y = 88.986". 

All non-hydrogen atoms were placed directly from the E-map. These atoms were 

refined with isotropic or anisotropic thermal parameters depending on whether the 

thermal parameters were positive, definite. The hydrogens of the coordinated 

pyridines were refined as riding-atoms with a 0.96 A ideal distance from the host 

atom and with individual isotropic thermal parameters. Approximately 1 2/3 pyridine 

solvent molecules were found for every one cluster unit. The lower than expected 

occupancy of one of the two solvent sites might be explained as arising from solvent 

loss. 

The major problem in this structure is the double orientation of coordinated 

pyridine ring 1. The close proximity of the nitrogen and the para-carbon in the two 

orientations required the use of an idealized-hexagon, rigid body (C-C, 1.395 A) with 
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isotropic thermal parameters. The partially occupied pyridine site was also refined 

as a rigid body, because it was ill-behaved as well. The structure was finally refined 

to R = 0.0750 and = 0.0941. The final electron density difference map showed 

the largest peak with 2.10 e/Â® and the largest hole with -1.70 e/Â®. The atomic 

coordinates and equivalent isotropic thermal parameters of the non-hydrogen atoms 

are given in Table 2, and the anisotropic thermal parameters of the non-hydrogen 

atoms are shown in Table 3. 

Structure determination for MOgSg(py)g- 2 py 

Due to the difficulties encountered in accurately describing the disorder in the 

triclinic structure, another attempt at data collection for the pyridine adduct was 

explored. The Siemens P4/RA diffractometer radiation source was changed to 

molybdenum radiation {k = 0.71073 A). A brown cubic crystal, with dimensions 

of 0.12 X 0.12 X 0.12 mm, was attached to the tip of a glass fiber and data collection 

proceeded at -45 ± 1^0. The cell constants for data collection were determined from 

reflections found by a rotation photograph. Graphite-monochromated Mo radiation 

was employed to collect data in the range 4® < 20 < 55°, using the 0-20 scan 

technique. Three standard reflections, measured every 97 reflections, showed some 

intensity variation during data collection which led to the application of a correction 

based on the decay. A total of 1460 unique reflections were collected and 600 of 

them were considered as observed with F > 6.0 a(F). Lorentz and polarization 

corrections were applied. Although a series of azimuthal reflections were collected 
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Table 2. Atomic coordinates and equivalent isotropic thermal parameters (Â^) 
of the non-hydrogen atoms for l\̂ OgSg(py)g • 1.65 py 

Atom X Y Z 

Mo1 0.5706 (3) 0.4047 (3) 0.1947 (1) 0.044 (2) 
Mo2 0.6724 (3) 0.3459 (3) 0.3123 (1) 0.041 (1) 
Mo3 0.4354 (3) 0.5392 (3) 0.2721 (1) 0.042(1) 
Mo4 0.4657 (3) 0.3260 (3) 0.3543 (1) 0.041 (1) 
Mo5 0.6032 (3) 0.1919 (3) 0.2759 (1) 0.043 (1) 
Mo6 0.3658 (3) 0.3841 (3) 0.2370 (1) 0.042(1) 
S1 0.6330 (8) 0.5451 (8) 0.2337 (4) 0.049 (4) 
S2 0.2498 (8) 0.5088 (8) 0.3121 (4) 0.045 (4) 
S3 0.4066 (8) 0.1841 (8) 0.3151 (4) 0.049 (5) 
S4 0.5029 (8) 0.2575 (8) 0.1678 (4) 0.047 (4) 
S5 0.7877 (8) 0.2242 (8) 0.2377 (4) 0.048 (4) 
S6 0.6889 (8) 0.1489 (8) 0.3847 (4) 0.043 (4) 
S7 0.3469 (8) 0.5806 (8) 0.1642 (4) 0.052 (4) 
S8 0.5342 (8) 0.4737 (8) 0.3812 (4) 0.046 (4) 
NI*" 0.6367 (42) 0.4352 (45) 0.0971 (18) 0.042(24) 
011" 0.5649 0.5302 0.0592 0.049(19) 
C12  ̂ 0.5976 0.5743 -0.0014 1324(440) 
013" 0.7020 0.5035 -0.0240 0.051 (25) 
CI 4" 0.7737 0.3785 0.0139 0.101 (34) 
015" 0.7411 0.3444 0.0745 0.040(17) 
N1* 0.6308 (38) 0.4640 (44) 0.0969 (17) 0.036(17) 
011* 0.6286 0.5801 0.0667 0.063(20) 
CI 2* 0.6482 0.6057 0.0032 0.089(28) 
CI 3* 0.6701 0.5153 -0.0303 0.230(85) 
CI 4* 0.6723 0.3993 -0.0002 0339(111) 
CI 5* 0.6526 0.3727 0.0634 0.076(23) 

^Equivalent isotropic U defined as one-third of the trace of the orthogonalized U,, 
tensor (U  ̂= % 2,Zj U,j a,* aj* a, a,) 

^Positions are the result of a rigid body refinement of the pyridine ring 
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Atom X Y Z Ueq. (Â2) 

N2 0.8555 (24) 0.3264 (25) 0.3578 11) 0.045(14) 
021 0.8744 (38) 0.3225 (32) 0.4157 21) 0.074(22) 
022 0.9761 (35) 0.3259 (37) 0.4448 18) 0.075(23) 
023 1.0654 (31) 0.3379 (38) 0.4077 21) 0.077(24) 
024 1.0507 (32) 0.3489 (36) 0.3457 18) 0.071 (21) 
025 0.9518 (33) 0.3397 (31) 0.3239 21) 0.071 (21) 
N3 0.3337 (25) 0.7490 (23) 0.2700 12) 0.043(13) 
031 0.2098 (36) 0.8226 (35) 0.2518 15) 0.060(21) 
032 0.14226(45) 0.9467(41) 0.2531 18) 0.080(25) 
033 0.2039 (51) 1.0017 (38) 0.2765 22) 0.097(28) 
034 0.3316 (46) 0.9345 (42) 0.2964 21) 0.089(30) 
035 0.3963 (35) 0.7945 (36) 0.2920 19) 0.065(22) 
N4 0.4015 (24) 0.2774 (23) 0.4540 11) 0.043(13) 
041 0.3656 (32) 0.3615 (35) 0.4922 22) 0.078(23) 
042 0.3279 (36) 0.3375 (35) 0.5469 14) 0.066(21) 
043 0.3154 (37) 0.2302 (40) 0.5691 15) 0.074(25) 
044 0.3541 (35) 0.1412 (35) 0.5317 15) 0.068(21) 
045 0.3943 (33) 0.1681 (35) 0.4751 15) 0.061 (20) 
N5 0.7062 (25) -0.0158 (22) 0.2769 13) 0.046(13) 
051 0.6528 (37) -0.0753 (34) 0.2536 14) 0.057(20) 
052 0.7230 (52) -0.2088 (38) 0.2539 18) 0.087(30) 
053 0.8421 (45) -0.2833 (41) 0.2782 20) 0.074(25) 
054 0.9013 (36) -0.2302 (35) 0.3043 21) 0.076(22) 
055 0.8296 (39) -0.0971 (38) 0.3008 17) 0.070(26) 
N6 0.1790 (27) 0.4028 (30) 0.1923 13) 0.059(17) 
061 0.1704 (41) 0.3049 (38) 0.1827 22) 0.092(26) 
062 0.0493 (58) 0.3288 (60) 0.1480 27) 0.142(22) 
063 -0.0498 (65) 0.4311 (62) 0.1360 29) 0.156(25) 
064 -0.0472 (57) 0.5281 (54) 0.1437 26) 0.132(20) 
065 0.0686 (43) 0.5180 (41) 0.1792 23) 0.116(30) 
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Table 2. (continued) 

Atom X Y Z % (A^) 

N7 0.9220 (38) 0.1597 (42) 0.5935 (16) 0.091 (25) 
071 0.9350 (42) 0.0532 (48) 0.5794 (20) 0.112(28) 
C72 0.8426 (44) 0.0390 (46) 0.5521 (19) 0.089(28) 
C73 0.7263 (35) 0.1299 (40) 0.5469 (17) 0.071 (22) 
C74 0.7023 (43) 0.2479 (42) 0.5594 (18) 0.093(26) 
075 0.7999 (46) 0.2575 (38) 0.5807 (16) 0.072(24) 
N8 0.0146 (46) 0.1412 (63) 0.8779 (25) 0.145(18) 
081® 0.1231 0.0340 0.8681 0.145(18) 
082® 0.2471 -0.0029 0.8961 0.145(18) 
083® 0.2625 0.0674 0.9338 0.145(18) 
084® 0.1540 0.1746 0.9437 0.145(18) 
085® 0.0300 0.2115 0.9157 0.145(18) 

^Positions are tine result of a rigid body refinement and also show partial occupancy 
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Table 3. Anisotropic tliermal parameters® (x 10® Â^) of tlie non-hydrogen 
atoms for MOeSQ(py)g • 1.65 py 

Atom Ui1 U22 ^33 U12 Ui3 ^23 

Mol 35(2) 58(2) 33 (2) -16(2) 10(1) -17 (2) 
Mo2 29 (2) 57(2) 33 (2) -14(1) 7(1) -16 (2) 
Mo3 34 (2) 54 (2) 33(2) -14(1) 7(1) -14(1) 
Mo4 31 (2) 53 (2) 29 (2) -11 (1) 5(1) -12 (1) 
Mo5 33 (2) 53 (2) 34 (2) -11 (1) 5(1) -17(1) 
Mo6 31 (2) 57 (2) 33 (2) -14(1) 5(1) -16 (2) 
SI 43(6) 56 (5) 40 (6) -17(4) 4(4) -14 (5) 
S2 32(5) 52 (5) 42(6) -11 (4) 10(4) -18 (4) 
S3 44 (6) 64 (6) 43 (6) -26 (5) 11 (5) -19 (5) 
S4 43(6) 61 (5) 30 (5) -14 (4) 2(4) -18 (4) 
S5 31 (5) 60 (5) 37 (6) -9(4) 3(4) -16 (4) 
S6 38 (5) 48 (5) 30 (5) -13 (4) 5(4) -6 (4) 
S7 38 (5) 57 (5) 38 (5) -8 (4) -9(4) -3(4) 
S8 36(5) 60 (5) 43 (5) -19(4) 9(4) -23 (5) 
N2 37 (16) 74 (19) 20 (16) -28 (14) -3 (13) -3(14) 
021 72 (29) 56 (22) 89 (35) -27 (21) 24 (25) -18 (23) 
C22 55 (25) 114(32) 47 (24) -34 (24) -22 (21) -19 (22) 
023 23 (20) 119(33) 93 (35) -42 (22) -5 (21) -18 (27) 
024 31 (21) 106 (30) 50 (26) -21 (20) -20 (18) -1 (22) 
025 51 (24) 68 (23) 103(34) -32 (20) 32 (24) -31 (23) 
N3 35 (17) 50 (16) 43 (18) -17 (14) 9(14) -14(14) 
031 65 (27) 72 (25) 32 (21) -21 (22) -2 (19) -17(19) 
032 97 (36) 69 (29) 32 (24) -14 (27) 11 (22) 5(20) 
033 114(44) 42 (23) 87 (39) 3(26) 61 (34) -19 (24) 
034 101 (39) 90 (33) 101 (39) -59 (31) 43 (33) -38 (30) 
035 43 (23) 85 (28) 84 (31) -34 (22) 37 (22) -46(25) 

^he coefficients U,j of the anisotropic thermal parameter expression are defined as: 
exp [ -2î  ( U,ih^a*  ̂+ Uggî ^b'̂  + UggiV  ̂+ 2Ui2hkaV + 2Ui3hla*c* + 2U23kibV) ] 
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Atom U 'l1 U22 U33 U12 Ui3 ^23 

N4 44 (16) 48 (15) 29 (15) -16(13) 4(12) -8(12) 
041 39 (22) 73 (25) 132 (42) -31 (20) 6(24) -35(27) 
042 92 (30) 86 (26) 19(18) -40 (23) 45 (20) -18(18) 
043 89 (31) 120 (34) 17(19) -55 (28) 27 (20) -16(21) 
044 81 (28) 80 (25) 27 (21) -42 (22) 10(19) 22(19) 
045 67 (25) 83 (26) 29 (20) -27 (21) 19(17) -22(18) 
N5 28 (16) 34 (14) 53 (19) 8(12) 5(14) -17(13) 
051 80 (28) 78 (25) 21 (19) -41 (23) 11 (18) -19(18) 
052 161 (51) 65 (28) 41 (26) -54 (31) 21 (29) -19 (22) 
053 88 (36) 58 (27) 68 (32) -25 (26) 35 (27) -23 (24) 
054 44 (24) 52 (24) 105 (38) -10 (20) 38 (24) -4(23) 
055 91 (33) 93(31) 64 (28) -72 (28) 54 (26) -28 (25) 
N6 47 (19) 91 (23) 41 (19) -34 (18) 17(15) -17(17) 
061 66 (31) 61 (27) 134 (45) -26 (24) 3(28) -10 (27) 
065 90 (37) 67 (28) 142 (49) -9 (26) -57 (34) 5(29) 
N7 86 (30) 130 (34) 60 (25) -43 (27) 34 (22) -50 (25) 
071 62 (32) 117(41) 53 (30) 43 (28) 15 (24) -19 (28) 
072 71 (33) 125 (39) 56 (30) -24 (31) -13 (25) -41 (28) 
073 38 (24) 102(31) 57 (26) -13 (22) 0(19) -34(23) 
074 87 (35) 92 (33) 45 (27) 0(26) -39 (24) -9(23) 
075 95 (34) 80 (27) 26 (22) -23 (27) 17 (22) -27 (20) 
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in order to apply an absorption correction, it was determined that none was 

necessary. The agreement factor for the averaging of reflections was 3.8%. 

The cubic space group Pa? was chosen based on systematic absences and 

intensity statistics. The unit cell parameter was a = 16.994 (2) Â and Z = 4. All non-

hydrogen atoms were placed directly from the E-map. These atoms were refined with 

anisotropic thermal parameters. The hydrogens of the coordinated pyridines were 

refined as riding-atoms with an ideal distance of 0.96 A from the host atom and with 

individual isotropic thermal parameters. 

The one solvent molecule was disordered about a three-fold axis (8c). All sites 

were properly modelled to account for this disorder by refining each position as 5/6 

carbon and 1/6 nitrogen. The MO0S3 cluster unit was centered on a? position (4b). 

The structure was finally refined to R = 0.0381 and = 0.0351. The final electron 

density difference map showed the largest peak with 0.51 e/A  ̂ and the largest hole 

with -0.63 e/A^. The atomic coordinates and equivalent isotropic thermal parameters 

of both the non-hydrogen and hydrogen atoms are given in Table 4, and the 

anisotropic thermal parameters of the non-hydrogen atoms are shown in Table 5. 

Structure determination for l\/l0gSg(pip)g-7 pip 

Single crystals were grown from the reaction of the propylamine adduct with neat 

piperidine at reflux for 2 days. By slowly reducing the volume of the filtrate and 

allowing the solution to stand at room temperature for several days, reddish-brown 

crystals were obtained. An irregularly shaped crystal, with dimensions of 0.50 x 0.40 
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Table 4. Atomic coordinates and equivalent isotropic tliermai parameters (Â^) 
of the non-hydrogen and hydrogen atoms for IVl0gSg(py)g • 2 py 

Atom X Y Z 

Mo 0.0578 (1) 0.5870 (1) 0.0345 (1) 0.034(1) 
S(1) 0.1025 (2) -0.3975 (2) -0.1025 (2) 0.045 (1) 
S(2) 0.1665 (2) 0.4942 (2) 0.0598 (2) 0.041 (1) 
N 0.1279 (6) 0.6934 (5) 0.0771 (5) 0.044 (3) 
0(1) 0.0959 (8) 0.7485 (7) 0.1235 (8) 0.063 (5) 
0(2) 0.1355 (10) 0.8098 (8) 0.1533 (9) 0.080 (6) 
0(3) 0.2115 (11) 0.8169 (8) 0.1387 (10) 0.099 (8) 
0(4) 0.2478 (9) 0.7641 (9) 0.0901 (9) 0.087 (7) 
0(5) 0.2036 (8) 0.7016 (8) 0.0624 (7) 0.063 (5) 
0(11)'' 0.3851 (14) 0.5076 (14) 0.0749 (20) 0.169(14) 
N(11)  ̂ 0.3851 (14) 0.5076 (14) 0.0749 (20) 0.169(14) 
0(12)" 0.4408 (19) 0.5194 (19) 0.1225(11) 0.147(14) 
N(12)  ̂ 0.4408 (19) 0.5194 (19) 0.1225 (11) 0.147(14) 

H(1A) 0.0402 0.7422 0.1301 0.035(27) 
H(2A) 0.1078 0.8412 0.1912 0.086(51) 
H(3A) 0.2364 0.8589 0.1672 0.053(31) 
H(4A) 0.3003 0.7823 0.0799 0.144(67) 
H(5A) 0.2317 0.6657 0.0291 0.082(47) 
H(IIA)'' 0.3501 0.4635 0.0787 0.180 
H(12C)'' 0.4446 0.4844 0.1667 0.150 

^Equivalent isotropic U defined as one-third of the trace of the orthogonalized Uy 
tensor = % I|Xj Uy a,' aj* a, a,) 

^Disordered positions 
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Table 5. Anisotropic thermal parameters® (x 10® Â^) of the non-hydrogen 
atoms for MOgSg(py)g • 2 py 

Atom Uii if
 

U33 U12 Ui3 ^23 

Mo 33 (1) 34 (1) 36 (1) -5(1) 1 (1) 2(1) 
S(1) 45 (1) 45 (1) 45 (1) -7(1) 7(1) 7(1) 
S(2) 36(2) 45(2) 43(2) -2(1) 0(1) 0(1) 
N 51 (6) 44(6) 37 (6) -15 (5) -2 (4) 11 (5) 
0(1) 52 (9) 48 (7) 88 (10) -5 (7) -13 (7) 2(7) 
0(2) 86 (11) 47 (9) 107 (13) -21 (9) -17(10) -13 (9) 
0(3) 130 (17) 61 (11) 105 (15) -65 (12) -58 (13) 21 (9) 
0(4) 72(11) 89 (12) 100 (13) -55 (10) -27(10) 37 (10) 
0(5) 59 (9) 74(9) 58 (8) -24 (8) 1 (7) 16(7) 
0(11) 81 (15) 178 (25) 247 (32) -71 (15) -34 (17) 99 (24) 
N(11) 81 (15) 178 (25) 247 (32) -71 (15) -34 (17) 99 (24) 
0(12) 122(21) 237 (34) 82 (14) -42 (20) -21 (14) 51 (16) 
N(12) 122 (21) 237 (34) 82 (14) -42 (20) -21 (14) 51 (16) 

®The coefficients U,j of the anisotropic thermal parameter expression are defined as; 
exp [ -2t̂  ( U^^h^a*  ̂+ + UgglV  ̂+ 2Ui2hkaV + 2U^3hla*c* + 2U23klbV) ] 
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X 0.35 mm, was attached to the tip of a glass fiber and mounted on the Siemens 

P4/RA diffractometer for data collection at -50 ± 1 *C. The cell constants for data 

collection were determined from reflections found by a rotation photograph. Graphite-

monochromated Mo radiation (k = 0.71073 Â) was employed to collect data in the 

range 4® < 20 < 60°, using the 0-20 scan technique. Three standard reflections, 

measured every 97 reflections, showed some intensity variation during data collection 

which led to the application of a correction based on the decay. A total of 6713 

unique reflections were collected and 5008 of them were considered as observed with 

F > 6.0 a(F). Lorentz and polarization corrections were applied. A series of 

azimuthal reflections were collected in order to apply a semi-empirical absorption 

correction. The agreement factor for the averaging of reflections was 2.2%. 

The tetragonal space group 17 was chosen based on systematic absences and 

intensity statistics. Two other space groups were possible, 14/m and 14, but neither 

provided the basis for a reasonable starting model. The unit cell parameters were 

found to be a = 19.421 (2) Â, c = 22.584 (3) A, and Z = 8. 

All non-hydrogen atoms were placed directly from the E-map. These atoms were 

refined with anisotropic thermal parameters, except for the disordered piperidine 

molecule (discussed further below). The hydrogens of the coordinated piperidines 

were refined as riding-atoms with C-H distances equal to 0.96 A and with N-H 

distances of 0.85 A and with fixed isotropic thermal parameters. 

The asymmetric unit was found to be M0gS^(pip)g 3.5 pip, where three of the 

solvent piperidine molecules were well-behaved, but the remaining half-piperidine 
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molecule was disordered. This disorder occurred about a crystallographic two-fold 

axis and was modelled with atoms 0(71), N(71), C(72), N{72), C(73), and N(73). The 

carbon/nitrogen atoms of this solvent molecule were given occupancies with the 

0.83333:0.16667 ratio. Hydrogen atoms were placed with an occupancy of 0.83333. 

These C-C and C-N bond lengths were constrained to be 1.5200 (1) Â in order to get 

near convergence. Thermal parameters of like atoms were constrained to have the 

same value. The largest shifts in the final cycle of refinement were due to oscillations 

in these thermal parameters, yet the result was close to convergence. 

The three ligand piperidine groups were found in the chair conformation. 

Likewise, the three well-behaved solvent piperidine molecules were also in the chair 

conformation. However, the disordered piperidine molecule once joined with its 

symmetry equivalent displayed the boat conformation. The MogSg cluster unit was 

centered on a 2-fold position (4e). The structure was finally refined to R = 0.0317 

and = 0.0366. The final electron density difference map showed the largest peak 

with 0.75 e/Â® and the largest hole with -0.74 e/Â®. The atomic coordinates and 

equivalent isotropic thermal parameters of the non-hydrogen atoms are given in Table 

6, and the anisotropic thermal paramters of the non-hydrogen atoms are shown in 

Table 7. 

Structure determination for MOgSg(pyrr)g-1 pyrr 

Single crystals were grown from the reaction of the propylamine adduct with neat 

pyrrolidine at reflux for 2 days. The filtrate was layered with diethyl ether and the 
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Table 6. Atomic coordinates and equivalent isotropic thermal parameters (Â^) 
of the non-hydrogen atoms for MogSg(pip)e • 7 pip 

Atom X Y Z Ueq. m 

Mo(1) 0.4925 (1) 0.5961 (1) 0.2664 (1) 0.019 (1 
Mo(2) 0.4323 (1) 0.4947 (1) 0.2071 (1) 0.019(1 
Mo(3) 0.4319 (1) 0.4951 (1) 0.3248 (1) 0.019(1 
S(1) 0.4937 (1) 0.5900 (1) 0.1581 (1) 0.024 (1 
S(2) 0.3809 (1) 0.4018 (1) 0.2662 (1) 0.024 (1 
S(3) 0.4943 (1) 0.5879 (1) 0.3744 (1) 0.025 (1 
S(4) 0.3671 (1) 0.5795 (1) 0.2660 (1) 0.023 (1 
N(1) 0.4753 (2) 0.7144 (2) 0.2624 (3) 0.028 (1 
0(11) 0.5289 (3) 0.7531 (3) 0.2320 (4) 0.044 (2 
0(12) 0.5114(4) 0.8299 (3) 0.2251 (4) 0.053 (3 
0(13) 0.4963 (5) 0.8261 (4) 0.2826 (4) 0.069 (4 
0(14) 0.4397 (5) 0.8224 (4) 0.3144 (4) 0.065 (4 
0(15) 0.4587 (5) 0.7456 (4) 0.3193 (4) 0.056 (3 
N(2) 0.3531 (3) 0.4816 (3) 0.1310 (2) 0.025 (1 
0(21) 0.3780 (3) 0.5029 (4) 0.0729 (3) 0.036 (2 
0(22) 0.3307 (4) 0.4833 (5) 0.0217 (3) 0.052 (3 
0(23) 0.2590 (5) 0.5142 (5) 0.0325 (4) 0.064 (3 
0(24) 0.2327 (4) 0.4908 (5) 0.0929 (3) 0.055 (3 
0(25) 0.2834 (3) 0.5094 (4) 0.1421 (3) 0.044 (2 
N(3) 0.3456 (3) 0.4902 (3) 0.3949 (2) 0.028 (2 
0(31) 0.3385 (5) 0.5498 (5) 0.4320 (4) 0.076 (4 
0(32) 0.2740 (5) 0.5446 (6) 0.4728 (5) 0.095 (5 
0(33) 0.2723 (5) 0.4798 (9) 0.5091 (4) 0.117(7 
0(34) 0.2806 (6) 0.4231 (7) 0.4700 (5) 0.106 (6 
0(35) 0.3458 (4) 0.4257 (5) 0.4304 (4) 0.075 (4 

^Equivalent isotropic U defined as one-third of the trace of the orthogonaiized U,j 
tensor (U^q = % S,Xj Uy a,* aj* a, a^) 
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Table 6. (continued) 

Atom X Y Z Ueq. (A^) 

N(4) 0.3325 (4) 0.3205 3) 0.1369 (3) 0.056 (2) 
0(41) 0.3571 (6) 0.2771 7) 0.0910 (5) 0.103 (5) 
0(42) 0.3082 (7) 0.2490 9) 0.0540 (5) 0.144 (8) 
0(43) 0.2482 (6) 0.2190 6) 0.0834 (5) 0.099 (5) 
0(44) 0.2253 (7) 0.2621 9) 0.1347 (7) 0.166 (9) 
0(45) 0.2709 (7) 0.2920 7) 0.1657 (6) • 0.143 (7) 
N(5) -0.0226 (4) 0.2757 3) 0.1930 (3) 0.048 (2) 
0(51) -0.0883 (5) 0.3074 4) 0.2052 (5) 0.068 (4) 
0(52) -0.1000 (5) 0.3680 4) 0.1628 (5) 0.065 (3) 
0(53) -0.0417 (5) 0.4184 4) 0.1686 (4) 0.055 (3) 
0(54) 0.0272 (5) 0.3821 5) 0.1623 (5) 0.069 (4) 
0(55) 0.0321 (5) 0.3218 4) 0.2037 (5) 0.066 (3) 
N(6) 0.6418 (3) 0.2881 3) 0.1626 (3) 0.038 (2) 
0(61) 0.7124 (4) 0.2751 4) 0.1757 (4) 0.051 (3) 
0(62) 0.7294 (5) 0.2017 5) 0.1673(5) 0.067 (3) 
0(63) 0.7130 (5) 0.1778 5) 0.1053 (4) 0.070 (4) 
0(64) 0.6414 (5) 0.1986 5) 0.0882 (4) 0.071 (4) 
0(65) 0.6265 (4) 0.2737 5) 0.1002 (3) 0.057 (3) 
0(71)" 0.5620 (13) 0.0202 12) 0.0392 (12) 0.252(13) 
N(71)'' 0.5620 (13) 0.0202 12) 0.0392 (12) 0.252(13) 
0(72)" 0.5422 (12) -0.0556 12) 0.0403 (9) 0.197 (9) 
N(72)'' 0.5422 (12) -0.0556 12) 0.0403 (9) 0.197 (9) 
0(73)" 0.4811 (16) -0.0607 15) -0.0016 (12) 0.321 (18) 
N(73)'' 0.4811 (16) -0.0607 15) -0.0016(12) 0.321 (18) 

'̂ Disordered positions 
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Table 7. Anisotropic tliermal parameters® (x 10® Â^) of the non-hydrogen 
atoms for MogSg(pip)g • 7pip 

Atom Ui1 if
 

^33 Ui2 Ul3 ^23 

Mo(1) 20 (1) 17(1) 21 (1) 0(1) 0(1) -1 (1) 
Mo(2) 20 (1) 19(1) 19(1) 0(1) -1 (1) 0(1) 
Mo(3) 20 (1) 20 (1) 19(1) -1 (1) 1 (1) 0(1) 
S(1) 27(1) 23 (1) 22 (1) 1 (1) -2(1) 4(1) 
S(2) 21 (1) 22 (1) 28(1) -5(1) 0(1) -1 (1) 
S(3) 28(1) 25 (1) 23 (1) 0(1) 0(1) -6 (1) 
S(4) 21 (1) 23(1) 26 (1) 3(1) 0(1) 1 (1) 
N(1) 29 (2) 21 (2) 35(3) 1 (2) 0(3) 0(3) 
C(11) 39(3) 22(3) 72(5) -4(3) 6(5) 5(4) 
0(12) 45 (4) 26(3) 87 (7) -7(3) 8(5) 7(4) 
0(13) 67 (5) 25 (3) 116(10) 3(4) -23 (6) -19(5) 
0(14) 102 (8) 23 (4) 72(6) 15(4) 13(6) -9(4) 
0(15) 82 (6) 28 (4) 59 (5) 11 (4) 13(5) -7(4) 
N(2) 30 (3) 25(3) 21 (2) 0(2) -3(2) -1 (2) 
0(21) 37 (4) 50 (4) 19(3) -3(3) -4 (3) 4(3) 
0(22) 63 (5) 73 (6) 21 (3) -6(5) -13 (3) -6 (4) 
0(23) 74(6) 65 (6) 52(5) 7(5) -45 (5) -4(4) 
0(24) 35(4) 75 (6) 54 (5) 8(4) -17(4) -15 (5) 
0(25) 35 (4) 52(5) 44(4) 7(3) -14 (3) -10 (4) 
N(3) 20 (3) 42(3) 23(2) 1 (2) 1 (2) 2(2) 
0(31) 50 (5) 99 (8) 78(7) -27 (5) 36 (5) -55 (6) 
0(32) 58 (6) 133 (11) 95 (8) -33 (7) 54 (6) -72 (8) 
0(33) 42 (5) 287 (20) 21 (4) -35(9) 7(4) -15 (8) 
0(34) 73(7) 146 (12) 101 (9) 32(8) 43 (7) 99 (9) 
0(35) 48(5) 106 (8) 71 (6) 22(5) 22(5) 61 (6) 

®The coefficients U,j of the anisotropic thermal parameter expression are defined as: 
exp [ -2t̂  ( Ui,hV  ̂+ + UgglV  ̂+ aU^ahkaV + ÊU^ghlac* + aUgakib c*) ] 
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Atom Ui1 U22 U33 U12 Ui3 ^23 

N(4) 76 (5) 47 (4) 44(4) -25 (4) 1 (4) -6 (3) 
C(41) 73(7) 141 (11) 96 (9) -45 (8) 25 (7) -66 (9) 
0(42) 143 (13) 210(17) 78 (8) -111 (13) 57 (9) -70(10) 
C(43) 137(11) 95 (8) 67 (7) -76 (8) 16(7) -23 (6) 
C(44) 147(15) 195(17) 156 (14) -104 (14) 99 (12) -108 (14) 
0(45) 170(14) 134 (12) 124(11) -110(11) 100 (11) -96(10) 
N(5) 70 (4) 24(3) 51 (4) 7(3) -4 (3) -2(3) 
0(51) 65 (6) 41 (4) 97 (8) -10 (4) 18(6) -2(5) 
0(52) 53 (5) 37 (4) 104(8) 9(4) -6 (5) -16 (5) 
0(53) 69 (6) 27 (4) 69 (6) -6 (4) 6(5) 3(4) 
0(54) 69 (6) 50 (5) 87(7) -19 (5) 18(6) -8(5) 
0(55) 60 (5) 41 (4) 98(7) 10(4) -24 (5) -16 (5) 
N(6) 36(3) 41 (3) 36(3) 7(3) 1 (3) -5(3) 
0(61) 52(5) 60 (5) 42(4) 5(4) -9 (4) -3(4) 
0(62) 55(5) 61 (6) 86 (7) 27(5) -16 (5) 6(5) 
0(63) 82 (7) 48 (5) 80 (7) 17(5) 22 (6) -18 (5) 
0(64) 67 (6) 94 (8) 53 (5) 3(5) -10(5) -34 (6) 
0(65) 54 (5) 77 (6) 40 (4) 32 (5) -9 (4) -8(4) 
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solution was allowed to stand at room temperature for several days. After this time, 

a small number of reddish-brown, rectangular crystals were obtained. A crystal was 

attached to the tip of a glass fiber and mounted on the Siemens P4/RA diffractometer 

for data collection at -60 ± 1°C. The cell constants for data collection were 

determined from reflections found by a rotation photograph. Graphite-

monochromated Cu radiation (k = 1.54178 Â) was employed to collect data in the 

range 4® < 20 < 115°, using the 0-29 scan technique. Three standard reflections, 

measured every 97 reflections, showed some intensity variation during data collection 

which led to the application of a correction based on the decay. A total of 7147 

unique reflections were collected and 4168 of them were considered as observed with 

F > 6.0 a(F). Lorentz and polarization corrections were applied. A series of 

azimuthal reflections were collected in order to apply a semi-empirical absorption 

correction. The agreement factor for the averaging of reflections was 6.8%. 

The tetragonal space group 14 /̂a was chosen based on systematic absences. 

The unit cell parameters were a = 29.933 (4) A, c = 23.697 (8) A, and Z = 16. The 

Mo, S, and N atoms were placed directly from the E-map. Some cartoons were also 

found, however, several of the pyrrolidine rings were difficult to model due to disorder 

and resulted in incomplete rings. Attempts to model this disorder by rigid-body 

methods also failed. 

The structure was composed of two-half molecules that are related by symmetry. 

The Mo, S, and N atoms were refined with anisotropic thermal parameters. The 

carbons were refined with anisotropic thermal parameters, if possible, but many could 
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only be refined Isotroplcaily. The observed disorder arose from the flexing of 

individual pyrrolidine rings. Cluster 1 was centered on a two-fold position (8e) and 

cluster 2 was on an inversion center (8d). The best structure refinement gave R = 

0.0675 and = 0.0911. The atomic coordinates and equivalent isotropic thermal 

parameters of the non-hydrogen atoms are listed in Table 8, and the anisotropic 

thermal parameters of the non-hydrogen atoms are shown in Table 9. 
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Table 8. Atomic coordinates and equivalent isotropic thermal parameters (Â^) 
of the non-hydrogen atoms for MogSg(pyrr)Q • 1 pyrr 

Atom X Y Z Ueq. (A¥ 

Mo11 0.4758 1) 0.7132 (1) -0.0033 (1) 0.052 (1) 
Mo12 0.4748 1) 0.7132 (1) -0.1149 (1) 0.051 (1) 
Mois 0.4481 1) 0.7850 (1) -0.0599 (1) 0.052 (1) 
IVI021 0.1916 1) 0.7298 (1) -0.2367 (1) 0.057 (1) 
Mo22 0.2672 1) 0.7285 (1) -0.1788 (1) 0.062 (1) 
Mo23 0.2643 1) 0.6948 (1) -0.2818 (1) 0.065 (1) 
S11 0.4061 2) 0.7147 (2) -0.0586 (2) 0.058 (2) 
S12 0.5474 2) 0.7181 (2) -0.1629 (2) 0.064 (2) 
S13 0.5484 2) 0.7184 (2) 0.0435 (2) 0.059 (2) 
SI 4 0.5024 2) 0.6505 (2) -0.0595 (2) 0.062 (2) 
S21 0.2257 2) 0.6615 (2) -0.2018 (3) 0.080 (3) 
S22 0.1664 2) 0.8017 (2) -0.2743 (3) 0.077 (3) 
S23 0.3064 2) 0.7997 (2) -0.1671 (3) 0.074 (2) 
S24 0.1989 2) 0.7624 (2) -0.1423 (3) 0.081 (3) 
N11 0.4505 7) 0.6699 (6) 0.0696 (7) 0.082 (9) 
cm 0.4023 10) 0.6563 (20) 0.0678 (19) 0.290(35) 
C114 0.4694 16) 0.6208 (13) 0.0838 (16) 0.240(27) 
N12 0.4389 7) 0.6689 (6) -0.1793 (8) 0.075 (8) 
C121 0.4204 10) 0.6268 (9) -0.1569 (11) 0.107(14) 
C122 0.4268 17) 0.5958 (15) -0.2019 (19) 0.251 (24) 
0123 0.4481 19) 0.6248 (17) -0.2572 (24) 0.327(34) 
CI 24 0.4694 11) 0.6537 (14) -0.2299 (11) 0.205(24) 
N13 0.3840 6) 0.8262 (6) -0.0664 (9) 0.072 (8) 
C131 0.3917 12) 0.8701 (12) -0.0986 (20) 0.179(25) 
C132 0.3591 24) 0.8877 (22) -0.0718 (31) 0.410(52) 
C133 0.3386 25) 0.8548 (24) -0.0220 (36) 0.506(79) 
CI 34 0.3614 16) 0.8307 (24) -0.0159 (20) 0.496(67) 

^Equivalent isotropic U defined as one-third of the trace of the orthogonaiized U,j 
tensor = Va 2,2j U,j a,* a,' a, aj) 
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Table 8. (continued) 

Atom X Y Z Ueq. (A^) 

N21 0.1192 (6) 0.7063 (6) -0.2266 (7) 0.070 (8) 
C211 0.0907 (8) 0,7353 (10) -0.1918 (12) 0.102(13) 
C212 0.0840 (21) 0.7103 (19) -0.1415 (30) 0.130(24) 
0213 0.0720 (24) 0,6609 (23) -0.1828 (31) 0.155(29) 
C214 0.1102(8) 0.6621 (10) -0.1948 (22) 0.254(34) 
N22 0.2898 (6) 0.7041 (8) -0.0942 (9) 0.099(10) 
C221 0.2935 (15) 0.6550 (14) -0.0813 (19) 0.229 (22) 
C222 0.2842 (15) 0.6603 (14) -0.0175 (19) 0.227(21) 
C223 0.2852 (13) 0.7016 (13) 0.0108 (18) 0.190(17) 
C224 0.2726 (12) 0,7230 (13) -0.0432 (16) 0.169(15) 
N23 0.2792 (10) 0.6274 (8) -0.3380 (19) 0.195(22) 
C231 0.2988 (20) 0.6025 (22) -0.3049 (30) 0.397(43) 
C232 0.3136 (21) 0.5642 (19) -0.3287 (25) 0.323(38) 
C233 0.2961 (19) 0.5744 (20) -0.3869 (26) 0.268(26) 
N31 0.7981 (18) 0.6590 (22) 0.0219 (26) 0.355(28) 
C311 0.7918 (27) 0.6072 (29) 0.0372 (36) 0.361 (39) 
C312 0.7586 (23) 0.5892 (24) 0.0836 (32) 6.314(33) 
0313 0.7662 (22) 0.6505 (27) 0.0957 (29) 0.303(30) 
C314 0.7840 (25) 0.6981 (27) 0.0792 (34) 0.351 (37) 
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Table 9. Anisotropic thermal parameters® (x 10® k?) of the non-hydrogen 
atoms for MOgSg(pyrr)g • 1 pyrr 

Atom Uii if
 

^33 Ul2 Ul3 ^23 

Mo11 58 (1) 59 (1) 40 (1) -8(1) 1 (1) 0(1) 
Mo12 54 (1) 60 (1) 40 (1) 2(1) -1 (1) -5(1) 
Mo13 53 (1) 61 (1) 43(1) 1(1) 0(1) -5(1) 
Mo21 52(1) 76 (1) 44 (1) -3(1) -1 (1) 5(1) 
Mo22 55 (1) 84 (1) 49 (1) -6(1) -4 (1) 11 (1) 
Mo23 59(1) 75 (1) 61 (1) 3(1) -2(1) -4(1) 
S11 52 (3) 72(4) 50 (4) -7(3) 2(3) -7(3) 
812 66(4) 76 (4) 50 (4) 4(3) 10(3) -1 (3) 
SI 3 69 (4) 70 (4) 39 (3) -5(3) -5 (3) 8(3) 
SI 4 73(4) 54(4) 59(4) -1 (3) -1 (3) 0(3) 
S21 74(4) 80 (4) 85(5) -8(4) -11 (4) 19(4) 
S22 61 (4) 88 (5) 81 (5) 3(3) -9(3) 3(4) 
S23 61 (4) 101 (5) 60(4) -8(4) -3(3) -9(4) 
S24 71 (4) 125 (6) 49 (4) -2(4) 4(3) -12 (4) 
Nil 112(17) 91 (15) 44 (12) -27 (13) 10(11) 2(11) 
cm 55 (19) 586 (91) 246 (49) -71 (35) -1 (25) 288(57) 
C114 382 (63) 200 (38) 137 (33) 229 (43) -17 (37) -51 (29) 
N12 108(16) 51 (12) 65 (14) -5(11) -25 (12) -2(10) 
C121 153 (29) 98 (22) 70 (20) -33 (21) -30 (19) -19(17) 
CI 24 162(32) 377 (59) 77 (23) -176 (37) 67 (23) -150(32) 
N13 53 (12) 78 (14) 86 (16) 23(11) -16(11) -31 (12) 
C131 105 (29) 121 (33) 312 (62) 9(26) -10 (34) 46(37) 
CI 34 308 (66) 995 (184) 186 (52) 525 (103) -69 (48) -96(80) 
N21 77 (14) 96 (15) 36 (11) 4(12) 16(10) 1(10) 
C211 68 (17) 159 (28) 79 (21) -12 (18) -8 (16) 2(20) 
C214 30 (16) 92 (25) 640 (99) -4(17) -43 (34) 132(42) 
N22 63 (14) 149 (22) 84 (17) -16(14) -3 (12) 5(16) 
N23 130 (24) 80 (18) 374 (58) 52 (18) -61 (30) 21(27) 

^he coefficients U,j of the anisotropic thermal parameter expression are defined as: 
exp [ -2jc  ̂ ( U^^hV  ̂+ + UgglV  ̂+ 2Ui2hkaV + aU^ahiaV + 2U23klbV) ] 
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RESULTS AND DISCUSSION 

Sulfidation Reactions 

Previous research on sulfide substitution into the MOgClg '̂*' cluster units 

(MOgCl̂ g) showed that NaSH was a good sulfiding agent. The use of a proton 

acceptor (OBu ) in 1-butanol also led to a greater and more facile sulfide 

substitution.̂  ̂ Laughlin showed that the 1:6:4 (MOgCl̂ g-NaSHiNaOBu) stoichiometry 

could produce MogSgCl2(py)4 and that completely sulfided MogSg cluster compounds 

could be prepared by the following two-step reaction sequence:̂  ̂  

1 MoeCha . 8 NaSH * 4 NaOBu MeOHjash ̂  MoeSyCKpy), 

MoeS^CKpy), . 2 NaSH . Mo«S,(py)  ̂

Based on the observation that an excess of sulfiding agent was needed in order 

to produce a completely sulfur-substituted product, research was initiated into 

reactions with an increasing sodium hydrosulfide content. Reactions with the 1:10:5 

stoichiometry resulted in products with a small, but variable, chlorine content (0-1 CI) 

remaining. The far-infrared spectra of the completely sulfided materials (Figure 1) 

showed the absence of Mo-CI stetching modes as compared to MOgCl̂ g- Very weak, 

but detectable, pyridine coordination bands at 629 and 431 cm'̂  and a broad Mo-S 

stretching vibration centered at 384 cm~  ̂ were also observed. The location of this 

Mo-S mode was indicative of the MOgSg cluster unit and the broad nature of the band 

showed the material was amorphous. 
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Figure 1. Far-infrared spectra (Nujol) of MogCl̂ g the pyridine adducts 
obtained from the 1:10:5 (b) and 1:12:6 (c) reactions 
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By increasing tlie reaction stoichiometry to 1:12:6 (Mo0Cli2:NaSI-i:NaOBu), a 

one-step procedure for tiie preparation of the MogSg cluster unit resulted. The 

brown/black product was highly pyridine deficient as indicated by the weak pyridine 

bands in the infrared spectrum (Figure 2). Pyridine coordination can be evidenced 

at 1597, 1213, 750, and 690 cm"  ̂ in the mid-IR region. Again, a broad Mo-S 

stretching mode was present and centered about 392 cm"\ Examination of this 

compound by both XPS and SEM-EDS indicated the presence of sodium. Elemental 

analyses resulted in the formulation of this pyridine-deficient product as 

Nag gMOgSg 4(py)2(MeOH). Infrared bands for methanol were not observed; 

however, the presence of methanol was based on higher than expected carbon and 

hydrogen results and on the fact that methanol was observed in the ternary sodium 

molybdenum sulfides (discussed in Paper 3). The pyridine and methanol contents 

were found to be variable from one reaction to another. Thus, this pyridine-deficient 

compound will be referred to as Na2yM0gSg_^y(py) .̂ The reactivity of this compound 

with the atmosphere was also found to be variable. Materials with less pyridine were 

more reactive (pyrophoric). 

Further SEM-EDS analysis of the pyridine-deficient compounds prepared by 

previous workers also indicated that sodium (not sodium chloride) was present. 

Based on these observations, it appears that intercluster Mo-S interactions are 

formed more favorably than the terminal pyridine coordination under these reaction 

conditions. This results in disordered materials with extended Mo-S-Mo intercluster 

bonding similar to that in the Chevrel phase compounds. Retention of the MogSg 
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Figure 2. Mid-infrared (a) and far-infrared (b) spectra (Nujol) of the pyridine 
adduct from the 1:12:6 reaction with MogCl̂ g, NaSH, and NaOBu. 



www.manaraa.com

65 

cluster unit could be unambiguously proven by the rapid reaction of this pyridine-

deficient material with n-propylamine and the further ability to form crystalline 

Mo0S3Lg cluster complexes with triethylphosphine, tetrahydrothiophene, pyrrolidine, 

and piperidine. 

Crystalline MOgSg(py)g 

The pyridine-deficient material was found to be somewhat soluble in pyridine and, 

upon further reaction in neat pyridine, a brown solid and brown solution were formed. 

The brown solid from this pyridine reaction was also somewhat pyridine soluble. 

Greater solubility was observed in coordinating solvents like n-propylamine and 

piperidine. Mid- and far-infrared spectra for the brown solid are shown in Figure 3. 

Coordinated pyridine is evidenced by the characteristic bands in the mid-IR region. 

In the far-IR region, there occur two separate pyridine bands at 629 and 612 cm'̂  

which are due to coordinated and "free" pyridine in the solid. Support for this 

conclusion can be found in the pyrrolidine and piperidine compounds which also 

contain both coordinated and "free" ligands even after drying overnight under dynamic 

vacuum. The narrow band resulting from the Mo-S stretching vibration at 378 cm"^ 

indicated that the material had some degree of crystallinity. This was evidenced in 

the x-ray powder diffraction pattern which showed a few weak lines at low two-theta 

values. Single crystals containing MOgSg(py)g were obtained by the slow reduction 

of the solvent volume from the filtrate and refrigeration for several days. 
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3. Mid-infrared (a) and far-infrared (b) spectra (Nujol) of the pyridine 
adduct from the reaction between Na2yM0gSQ^y(py)^ and neat py 
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The chemistry of the tungsten analogues showed few similarities J ̂  The 

hexapyridine adduct could be prepared by the reaction of WgCl̂ g' NaSH, and NaOBu 

in a 1:12:6 ratio in neat pyridine. The resulting product was a red, relatively air-stable 

material which was almost completely insoluble in pyridine. Crystals were grown by 

a sealed tube reaction at 200°C in pyridine. In comparison, the reaction of MogCl̂ g 

in neat pyridine led to incomplete sulfidation, thus 1-butanol was used with added 

pyridine. The use of the same reaction stoichiometry resulted in a product generally 

formulated as Na2yMogSg^y(py)jj where excess NagS was present. This brown 

pyridine-deficient material was somewhat soluble in pyridine and, with further reaction 

in neat pyridine, crystals of the pyridine adduct could be grown out of the solution. 

These brown crystals contained pyridine as solvent of crystallization. Based on these 

obsen/ations, the reaction chemistry of the molybdenum and tungsten sulfide clusters 

are quite different. When it comes to exploring reaction behavior, however, the 

comparison of these reaction products would prove interesting. 

LIgand Exchange Reactions 

Earlier research into ligand exchange reactions focused on the preparation of the 

triethylphosphine, propylamine, and tetrahydrothiophene adducts. The triethyl-

phosphine complex was produced by a simple exchange reaction of the pyridine 

adduct with triethylphosphine in toluene and resulted in a crystalline solid. Upon 

further study, it was found that n-propylamine was much more labile than pyridine and 

thus made an excellent candidate for ligand exchange. This was exhibited for the 
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tetrahydrothiophene adduct. Starting with the propylamine adduct resulted in a more 

facile reaction and formation of a crystalline product. However, the study of the 

reactivity of either the pyridine or propylamine adducts has been limited. 

Some exploration has been made into the ligand substitution reactions of the 

tungsten analogues.^ ̂  Initial differences were found, since the pyridine adduct 

WgS8(py)6 was completely insoluble in n-propylamine. However, exchange reactions 

produced the triethylphosphine and tetrahydrothiophene adducts from the pyridine 

cluster complex. From the crystal structure data, bond order calculations of the 

metal-ligand bond strengths indicated that the metal-nitrogen bonds of coordinated 

pyridine were at least as weak as, if not weaker than, the metal-sulfur bonds in 

coordinated tetrahydrothiophene. The calculations also showed that the metal-

phosphorus bonds of coordinated triethylphosphine were the strongest. These results 

seemed to indicate that the best materials for subsequent deligation should be the 

nitrogen-based ligands. 

4-Methylpyridine 

Further study into the reactivity of the pyridine-deficient material with 4-

methylpyridine resulted in the formation of the 4-Mepy adduct. The mid- and far-

infrared spectra for this adduct are shown in Figure 4. The mid-IR region shows 

bands attributable to 4-methylpyridine; especially identifiable are the strong bands at 

1612 and 491 cm'\ In the far-IR region, the bands at 491 and 397 cm"^ are due to 

two ring torsion modes for 4-methylpyrldine and the band at 384 cm"^ is the Mo-S 
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4. Mid-infrared (a) and far-infrared (b) spectra (Nujol) of the 
4-Mepy adduct from the reaction between Na2yMogSg^y(py)x 
and 4-methylpyridine 
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stretching mode. The presence of the band at 273 cm'̂  is most lil<ely due to the Mo-

N stretching mode and is observed for all of the nitrogen-based iigands in the range 

of 265-276 cm"^. The x-ray powder diffraction pattern resulted in several weak lines 

at low two-theta values which indicated some crystallinity for the solid. Attempts to 

grow single crystals from the filtrate have not succeeded. 

Extended reactions of the 4-Mepy adduct under reflux in neat 4-methylpyridine 

resulted in dellgation and the formation of intercluster Mo-S interactions. The infrared 

spectrum showed only very weak bands attributable to 4-methylpyridine and a broad 

Mo-S mode centered about 396-400 cm'\ Under these reaction conditions, the 

interactions must be weak and random in nature since extraction of this material with 

n-propylamine results in the formation of the propylamine adduct. Thus, similar 

behavior to the pyridine-deficient compound occurred. 

Ligand replacement reactions of the 4-methylpyridine adduct show that this ligand 

can be exchanged to produce the pyridine, propylamine, triethylphosphine, and 

pyrrolidine adducts as identified by their respective infrared spectra. The reactivity 

of this compound is similar to the pyridine-deficient material, but neither is as reactive 

as the propylamine complex. 

Propylamine 

The pyridine-deficient material can be readily extracted with n-propylamine to 

form the propylamine adduct. Previous study on the propylamine adduct had shown 

that the degree of coordination was greatly dependent upon drying conditions. 
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Longer drying under dynamic vacuum resulted in greater ligand loss as indicated in 

the elemental analyses. The reaction product appeared crystalline; however, it was 

glassy as evidenced by its amorphous x-ray powder diffraction pattern. The 

amorphous nature is also observed in the infrared spectra of this complex. As shown 

in Figure 5, the far-IR region contains the broad Mo-S stretching mode centered at 

384 cm'\ The mid-IR region shows bands attributable to propylamine coordination. 

Also, a very weak N-H stretching band can be observed at about 3170 cm"\ 

Attempts to prepare single crystals by slow reduction of volume have not succeeded 

because of the high solubility in neat n-propylamine and then subsequent ligand loss 

and precipitation. Also, layering of the solution with diethyl ether or toluene has not 

produced the desired single crystals. However, the ease of deligation and the 

reactivity of the propylamine adduct does make this material an excellent intermediate 

for further ligand exchange reactions. 

The propylamine adduct has been reacted with a wide range of coordinating 

solvents like pyridine, 4-methylpyridine, pyrrolidine, piperidine, and tetrahydro-

thiophene to produce the corresponding cluster complexes. The reactions are much 

more facile with the propylamine adduct as compared to identical reactions with the 

pyridine-deficlent compound. 

Pyrrolidine 

The pyrrolidine adduct can be easily formed by the reaction of the PrNHg adduct 

with neat pyrrolidine; however, single crystals could only be prepared by layering the 
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Figure 5. Mid-infrared (a) and far-infrared (b) spectra (Nujol) of the 
propylamine adduct from the extraction of Na«„MocSfî .,(py)„ 
with neat propylamine ^ ® " 
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filtrate with diethyl ether. The pyrrolidine adduct was found to be soluble in toluene 

and was the first readily soluble nitrogen-ligated cluster complex. Over time, though, 

some solid slowly precipitated out of the toluene solution. This solubility opened 

avenues for characterization by UV-VIS and NMR spectroscopy. The UV-ViS data 

are summarized in Table 10. Neither peak in the electronic spectrum is believed to 

be arising from the HOMO-LUMO transition. Earlier studies on MOgSg(PEtg)g 

indicated that this T^y -» Eg transition occurred at 991 nm.^® The higher energy 

absorptions at 491 and 289 nm were not assigned. A broad shoulder at about 340 

nm is also observed in the UV-VIS spectrum of the triethylphosphine adduct. Similar 

higher energy bands at about 340 and 500 nm can be noted for the pyrrolidine and 

piperldine adducts; however, the near-infrared region was not examined for the band 

around 1000 nm. 

Table 10. UV-VIS data for toluene soluble cluster complexes 

MOgSgLg 
clusters 

Peak 1 
(nm) 

Peak 2 
(nm) 

pyrr 498 342.5 

pip 500 341 

PEtg 491 289 

Elemental analyses indicated that the pyrrolidine adduct still contained excess 

pyrrolidine (-1 pyrr) even after drying under a dynamic vacuum. This observation 

was confirmed by NMR. The NMR spectrum (Figure 6) showed the presence of 

bands attributable to both free and coordinated pyrrolidine. The a-CHg resonance 
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Figure 6. Proton NMR spectrum (300 MHz) of pyrrolidine adduct in deuterated benzene showing 
coordinated pyrr at 1.518 and 0.979 ppm and free pyrr at 2.659 and 1.399 ppm 
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has been reported at 2.78 ppm and the p CHg resonance at approximately 1.60 ppm 

for free pyrrolidine in deuterated chloroform.^^ The spectrum of the adduct run in 

deuterated benzene showed the free ligand a-CHg peak at 2.66 ppm and the p-CHg 

peak at 1.41 ppm. Also, broad bands attributable to coordinated pyrrolidine were 

identified at 1.52 ppm and 0.98 ppm. Further efforts in making proton assignments 

were not attempted. 

The infrared spectrum for the pyrrolidine adduct is shown in Figure 7. Distinct 

bands attributable to pyrr are found at 1070,1029, and 904 cm"^. The band from the 

N-H stretching mode is present at 3194 cm"^ and the Mo-S stretching band is found 

at 381 cm'̂ . The peak at 273 cm'̂  is thought to result from a Mo-N stretching mode. 

Piperidine 

Results for the piperidine complex were similar to those of pyrrolidine. The 

piperidine adduct was prepared by the reaction of the PrNHg adduct with neat 

piperidine. By slow reduction of the filtrate volume and standing at room temperature, 

crystalline material was obtained in larger quantities than for the pyrrolidine adduct. 

Also, the piperidine adduct was much more soluble in toluene than the pyrrolidine 

complex and showed even greater solubility in chlorobenzene. The infrared spectrum 

for the piperidine adduct is shown in Figure 8. The complex exhibits a distinctive IR 

band located at 869 cm'̂  and the Mo-S stretching vibration is present at 382 cm'̂ . 

N H stretching modes are also found in this spectrum at 3287 and 3214 cm'̂  for the 

free and coordinated ligand, respectively. 
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Figure 7. Mid/far-infrared spectrum (Nujol) of the pyrrolidine adduct from the 
reaction of MoeSg(PrNH2)y with neat pyrrolidine. The entire 
spectrum (a) and the region from 1500-200 cm'"" (b) are shown. 
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Mid/far-infrared spectrum (Nujol) of the piperidine adduct from the 
reaction of Mo0Sg(PrNH2)y and neat piperidine. The entire spectrum 
(a) and the region from 1500-200 cm"^ (b) are shown. 
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As observed in Tabie 10, the UV-VIS values are very similar to the pyrrolidine 

and triethylphosphine complexes. Like the results for the pyrrolidine adduct, 

elemental analyses for the piperidine adduct indicated excess Iigand present even 

after drying under dynamic vacuum. While the pyrrolidine adduct indicated 1 excess 

Iigand, the piperidine adduct indicated 4-7 excess ligands present. Therefore, a 

proton NMR study was undertaken to identify and then make assignments of the free 

and coordinated piperidine protons. 

NMR study on piperidine adduct 

Literature values for the free piperidine resonances were reported for a-CHg at 

2.77 ppm (s) and for p & ^CH2 at 1.52 ppm (d) in deuterated chloroform.^® The 

initial spectrum at 300 MHz in deuterated benzene (Figure 9a) showed the presence 

of free piperidine bands at 2.61 and 1.39 ppm, as well as, coordinated piperidine 

bands forming a doublet at 3.90 & 3.85 ppm and unresolved multiplets at 3.25-3.07 

ppm and 1.11-0.85 ppm. Further information was gained from a proton decoupling 

experiment. 

Irradiation at the doublet (3.87 ppm) resulted in changes in all of the multiplets 

and the observation of a peak shoulder arising at 1.31 ppm. The presence of this 

shoulder near the p,Y peak of free piperidine was observed in all of the irradiation 

experiments. Further irradiation at 3.17 and 3.05 ppm resulted in the doublet 

becoming a singlet (3.89 ppm) and changes in intensity and splitting of the multiplet 

at 0.90-0.85 ppm. Irradiation at free a-CHg (2.59 ppm) showed no change in the 



www.manaraa.com

79 

IT 1.4 2.t 2.4 J.4 3 2 1 # # # 

m 

E2 

2.5 3.5 

PPM 

Figure 9. Proton NMR spectra of the piperidine adduct in CgDg showing 
spectra collected on Nicolet 300 MHz NMR (a) and Unity 500 MHz 
NMR (b). Spectrum (b) is labelled as to peak assignments 
discussed in text. 
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coordinated peaks. Finally, irradiation at 1.11 and 0.88 ppm resulted in changes in 

the doublet and multiplets at 3.25-3.07 ppm. These results indicated that a great deal 

of interaction was occurring between the various piperidine hydrogens. Also, the 

presence of a shoulder on the free p,Y peak most likely resulted from a coordinated 

pip band intermixed with the free band, rather than the separation of the free peak 

into its two components. 

The system was studied using a higher field instrument (500 MHz NMR) in order 

to produce further peak separation and aid in proton assignments. The spectrum 

(Figure 9b) is labelled for peak identification. The free piperidine bands are D at 2.65 

ppm (a-CHg) and El at 1.38 ppm (P,y-CH2) and the coordinated piperidine bands are 

labelled as A,B,C,E2,F,G,H. The spectrum showed greater resolution as indicated 

by (1) two distinct multiplets - B at 3.23-3.15 ppm and C at 3.10-3.06 ppm, (2) the 

"shoulder" on the free P,y peak (El) at 1.35 ppm possibly due to resolution of free j-

CHg protons, and (3) the three distinct multiplets - Fat 1.14-1.11 ppm, G at 1.06-0.97 

ppm, and H at 0.91-0.82 ppm. 

Peak integration values were used to form some general conclusions about the 

ratio of free to coordinated piperidine ligands. Based on literature data, peak D was 

determined to be arising from the free piperidine a-protons (a-CHg) and it was 

assumed that the multiplets A (3.90-3.87 ppm) and B (3.23-3.15 ppm) were the result 

of the two differing coordinated piperidine a-protons (axial and equatorial). Also, it 

was assumed that these cluster complexes were of the general formula MOgSg(pip)g 

• X pip which resulted in 24 a-H for coordinated pip and 4x a-H for free pip. Then 
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using the relative integrals from Integration, the amount of free piperidine could be 

calculated. The Initial NMR experiment on the 300 MHz NMR indicated 4.3 free pip 

and the experiment on the 500 MHz NMR showed 5.0 free pip. Molybdenum 

analyses on this compound resulted in 29.39% Mo or approximately 13 piperidines. 

Also, knowing that the ratio of free a-H to free P,y-H was 4 to 6, the contribution of 

coordinated piperidine to peal< E could be calculated. The results show that peak E 

is composed of about 55% free (El ) and 45% coordinated (E2) piperidine. 

Two-dimensional NMR was implemented in order to gain further information 

concerning the proton assignments. The techniques employed were double quantum 

correlation spectroscopy (DQCOSY) which studied through-bond coupling interactions 

and Nuclear Overhauser Effect spectroscopy (NOESY) which studied through-space 

coupling interactions. The NMR spectra are shown in Figures 10 to 12, the results 

tabulated in Table 11, and proton assignments formulated in Figure 13. The proton 

NMR spectrum for the two-dimensional experiments (Figure 10) showed several 

differences from the previous spectrum on the 500 MHz instrument (Figure 9b). The 

presence of bands at 3.45-3.32 ppm resulted from methanol which was used to clean 

the NMR tube prior to use. Also, there is a marked difference in the free piperidine 

peaks between the two spectra. The free a-CHg peak (D) is smaller in size for 

Figure 10 and it is completely absent in the two-dimensional spectra. The spectral 

differences for the free piperidines can also be noticed for the free p.y peak at 1.38 

ppm. In Figure 10, the peak is dominated by the coordinated piperidine band E2 as 

observed by the doublet. These results might be due to the short time interval 
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Figure 10. Proton NMR spectrum (500 MHz) of piperidine adduct in CgDg 
collected during 2-dimensional DQCOSY and NOESY experiments 
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Figure 11. Double quantum correlation spectroscopy (DQCOSY) spectrum of 
the piperidine adduct showing through-bond interactions. The peaks 
on the diagonal are labelled as in Figure 10 and the presence of 
off-diagonal peaks indicates the occurrence of coupling interactions 
between the labelled peaks. 
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Figure 12. Nuclear Overhauser Effect spectroscopy (NOESY) spectrum of the 
plperidine adduct showing through-space Interactions. The peaks 
on the diagonal are labelled as in Figure 10 and the presence of 
off-diagonal peaks indicates the occurrence of through-space 
coupling between the labelled peaks. 
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Table 11. Through-bond (DQCOSY) and through-space (NOESY) interactions observed in two-dimensional 
NMR spectra shown in Figures 11 and 12. E signifies the interaction of peak E2. 

A B C D E F G H 

DQCOSY B,C,E.H A,C,E,H A.B —* A,B,F,G.H E.G.H E.F.H A,B,E,F,G 

NOESY B,C,E.H A.C.E,G A.B.H A.B.F,G.H E.G.H B.E.F.H A,C,E,F,G 
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A - equatorial a 
B - axial a 
C - NH proton (axial) 
D - free a 
E1- free p.y 
E2- axial p 
F - axial y 
G - equatorial y 
H - equatorial p 

Figure 13. Proton assignments for coordinated piperidine were formulated based 
on the results of the DQCOSY and NOESY experiments and are shown 
In the structural diagram 

between pulses relative to a longer spin-lattice relaxation time, T.,. This would result 

in an incomplete relaxation process for the free piperidine and reduction of the peak. 

The crystal structure of the adduct showed that the coordinated piperidine was 

present in the chair conformation and that the ligand was bonded to molybdenum 

exclusively through the equatorial position. If fast conformational exchange between 

boat and chair conformations was occurring in solution, a broadening of the 

coordinated peaks would be expected; but this was not observed. 

In the following discussion, the reference to proton E signifies the coordinated 

piperidine proton referred to previously as E2. As noted in Table 11, similarities in 

the DQCOSY interactions could be observed for protons A & B, E & H, and F & G. 

Proton C interacts only with protons A & B which indicates that it must arise from the 

N-H proton. Likewise, A & B interact with C and E & H which leads to their 

assignment as the a-hydrogens. Integration showed that peaks C,F,G were all about 

one-half the value of the other peaks and thus they were assigned as single protons. 
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Also, protons F & G Interact only with each other and E & H which leads to their 

assignment as the y-hydrogens. The remaining protons, E & H, are therefore p-

hydrogens and interact with both the a- and y-hydrogens as expected. 

A qualitative discussion will be attempted concerning the observed splittings in 

the NMR spectra for the piperidine adduct. In order to gain a better understanding 

of the coupling which is occurring in this system, modelling should be explored. The 

splitting of peak A into a doublet can be reasoned from much stronger coupling of the 

axial-axial protons between A and E than for the axial-equatorial interaction between 

A and B. Likewise, the observed doublet in Figure 10 of the E peak (E2) could arise 

from the same interaction with A. Peak F should also show this strong axial-axial 

coupling and results in a pattern that somewhat resembles a doublet. The other 

peaks show much more complicated splitting patterns due to smaller differences in 

coupling between equatorial-equatorial and equatorial-axial protons. In the DQCOSY 

spectrum for peak C, there is a much greater interaction between B & C than 

between A & C, which could lead to something between a doublet and a triplet. No 

explanation has been developed concerning peaks B, G, and H which all somewhat 

resemble quartets. 

Tetrahydrothiophene 

Previous research concerning the tetrahydrothiophene adduct resulted in the 

report of the molecular structure of crystals grown from the filtrate.^ However, no 

discussion was made of the predominant product - the insoluble brown solid. 
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Analyses on this product indicated that the material was highly ligand deficient and 

the x-ray powder pattern showed that it was amorphous. A comparison of the far-

infrared spectra for the crystalline product and the tht-deficient complex is given in 

Figure 14. The deficient material has a much larger bandwidth which is again 

indicative of an amorphous material. Also, a peak indicating tht coordination is 

present at 515 cm'\ 

The yields of the crystalline MOgSg(tht)g reported previously were never greater 

than 5-10%. Therefore, attempts were made to improve the yields of the crystallline 

material by varying the reaction conditions. It was discovered that heating was 

necessary in the reaction of M0gSg(PrNH2)y with tht to produce complete exchange; 

stirring at room temperature for up to 15 days produced only mixed PrNHg/tht 

complexes. Extraction of the propylamine adduct with neat tht resulted in complete 

dissolution and the formation of very small amounts of crystalline material in the 

warmed receiving flask. Upon drying, however, the brown product was not crystalline 

in nature. The formation of the crystalline material in the warmed flask indicated a 

solubility limit which was reached and thus crystals formed from the solution. The 

best results were observed by refluxing for the short time period of 1-2 hours. The 

red crystalline material could be obtained from the filtrate in similar yields to that 

found previously. Longer heating (4-24 hours) resulted in larger amounts of the 

brown amorphous material. Thus, no improvement has been made on increasing the 

yield of the crystalline tht product. 
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Figure 14. Far-infrared spectra (Nujol) of the tetrahydrothiophene adducts for 
the crystalline MogSg(tht)g (a) and the tht-deficient solid (b) 
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Ligand replacement reactions of the tht-deficient complex showed that this ligand 

could be exchanged for propylamine, pyridine, and triethylphosphine. The products 

were identified by their respective infrared spectra. 

Thiophene 

Previously, attempts were made to prepare the thiophene-bound complex starting 

from the pyridine-deficient compound. The results indicated that the thiophene 

adduct was not formed. However, studies using thiophene complexes as models for 

hydrodesulfurization prompted further interest in preparing this adduct. Numerous 

attempts at the reaction of the propylamine complex with neat thiophene did not result 

in formation of the desired product. The infrared spectra showed only propylamine 

coordination and thus indicated that no reaction had occurred. 

Nitriles 

In an attempt to form more labile complexes, research focused on the preparation 

of nitrile adducts. A variety of nitriles were explored including acetonitrile, 

propionitrile, butyronitrile, and benzonitrile. The reactions were studied in neat nitrile 

and with the addition of trifluoromethanesulfonic acid. The use of acetonitrile, 

propionitrile, and butyronitrile produced an unreacted propylamine complex as 

identified by the infrared spectra. The addition of the acid resulted in coordination of 

the triflate anion (CF3SO3') instead of the desired nitrile. The reaction with 

benzonitrile in toluene produced a propylamine complex with included benzonitrile. 
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The infrared spectrum of this product is shown in Figure 15. The benzonitrile 

CsN mode is observed at 2223 cm'̂  and other distinctive bands are identified at 756 

and 547 cm'̂ . The propylamine bands are found at 1567,1067,1041, and 999 cm"^. 

As noticed in the far-IR region, the Mo-S stretching mode is centered at 390 cm'\ 

the Mo-N stretch is at 261 cm'̂ , and possibly a Mo-Mo stretch at 236 cm"^. The x-

ray powder diffraction pattern was indicative of an amorphous material and the 

elemental analyses also indicated a ligand-deficient complex. 

Infrared Spectroscopy 

The use of this technique was the first step in identification of the reaction 

products and has proven to be an effective tool for the characterization of the MogSg 

cluster complexes. Characteristic bands for the coordinated organic ligands could be 

identified and are tabulated in Table 12. Also, characteristic bands for Mo-S, Mo-N 

and Mo-Mo modes have been observed. 

As shown previously in Figure 1, the formation of the MogSg unit can be 

observed by the loss of Mo-CI modes at 345 and 255 cm'̂  and the appearance of 

the Mo-S vibration at 384-392 cm"\ The presence of the cluster unit was later 

confirmed by other techniques, but infrared spectroscopy results in a simple tool for 

identification of MOgSg cluster complexes. 

The reaction to form the pyridine adduct produced an infrared spectrum (Figure 

3) showing characteristic bands for pyridine coordination. Previous studies have 

resulted in the identification and assignment of these pyridine vibrations in molecular 
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Figure 15. Mid/far-infrared spectrum (Nujol) for the reaction of MogSg(PrNH2)y 
with benzonitrile in toluene. Bands for coordinated propylamine ana 
for included benzonitrile are observed in this spectrum. 
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Table 12. Infrared absorption frequencies (cm~^) of the molecular MOgSg cluster complexes 

DV 4MeDV PrNH« Dvrr DID tht PEtg PhCN 
1589(m)* 1612(m) 3170(vw) 3194(m) 3214(w) 2223(w) 
1570(w) 1568(m) 1583(w) 1593(w,br) 1594(w) 
1477(w,sh) 1497(w) 
1441(ms) 1420(w) 

1329(vw) 1303(w) 
1350(sh) 
1311(w) 1306(m) 

1414(m) 

1261(w) 1227(m) 1260(w) 1264(w) 1269(m) 
1213(m) 1217(vw) 1213(vw) 1225(w) 1188(w) 1254(m) 1249(m) 
1148(w) 1207(vw) 1209(w) 1169(w) 

1117(w,sh) 
1130(m) 

1135(w,b) 
1175(w) 
1158(w) 

1067(m) 1067(w) 1066(vw) 1070(s) 1084(w) 1070(ms) 
1038(m) 1038(m) 1029(s) 1045(m) 1035(vw) 1032(s) 
1009(vw) 1018(m) 

997(m) 
1018(s) 
989(w,sh) 

1023(vw) 
998(m) 

1026(w) 

962(mw) 940(m) 
904(s) 

971 (s) 
940(w) 

957(m) 974(w) 
912{w) 

860(vw) 869(s) 879(ms) 842(w) 
800(w) 804(m) 805(m) 807(ms) 808(m) 804(w) 
752(ms) 750(w) 739(w) 760(s) 756(s) 
690(m) 867(vw) 656(w) 627(w) 667(w) 715(s) 686(ms) 
629(w) 627(w) 597(w) 666(w) 618(w) 
612(w) 545(vw) 

491 (m) 
522(vw) 562(w) 

464(w) 
515(m) 
472(vw) 

622(m) 
404(m) 

547(m) 

430(w) 397(w) 437(w) 390(s) 401(w,sh) 
378(s) 384(s) 384(s,br) 381 (s) 382(s) 389(s) 364(m) 390(s) 
271 (w) 273(w) 265(br) 273(w) 269(w) 272(w) 334{m) 261 (w) 
240(w) 

214(vw) 
234(vw) 
215 W 

234(w) 
213(w) 

236(w) 
217(vw) 

236(w) 

^Relative intensities given in parentheses: s=strong, m=medium, w=weak, v=very, sh=shoulder, br=broad 
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complexes.̂ '̂̂  ̂ The mid-IR vibrations have generally been found to be either 

carbon-carbon (ring modes) or carbon-hydrogen in nature. Two characteristic modes 

of coordinated pyridine are found in the far-infrared region. The band at about 625 

cm'̂  was identified as an in-plane ring bending mode and the band at 420 cm'̂  as 

an out-of-plane bending mode. For the pyridine adduct of the MogSg cluster, these 

modes arise at 629 and 430 cm"\ respectively. However, also present in the 

spectrum is a band at 612 cm'\ 

Similar observations have been noted for the tungsten analogues.̂  ̂  The extra 

band was found in samples that possessed higher than expected elemental analyses 

for carbon and hydrogen, and was explained as the presence of free pyridine in the 

product. For WgSg(py)g, only one band was observed at 634 cm'̂ . The free pyridine 

ring modes have been reported at 601 and 403 cm'̂  24,25 der Waals bonding 

interactions between the pyridines could result in the observed inclusion of "free" 

pyridine in the complex. This interaction should lead to a slight shifting of the "free" 

pyridine as observed by the band at 612 cm"  ̂ and the shoulder at 415 cm'\ 

Evidence for included pyridine in the MogSg cluster complex is noted from the 

observation of pyridine as solvent of crystallization in the crystalline material. 

Trapping of "free" ligand has been observed for the pyrrolidine and piperidine 

complexes, however, this is most likely due to hydrogen bonding interactions. The 

band at 271 cm'̂  has been assigned as a Mo-N stretching mode. All of the nitrogen-

ligated complexes exhibit this band in the range of 265-276 cm'̂ . Also, the band at 

240 cm"  ̂ may be tentatively assigned as a Mo-Mo stretching mode. Previous 
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research has shown that a Mo-Mo stretching mode might be assigned to a band at 

approximately 230 cm'̂  for MogXgYg (X=CI,Br; Y=CI,Br,l) compounds.̂ ® 

Infrared spectroscopy has been used to observe ligand exchange reactions as 

evidenced by the preparation of the 4-methylpyridine .adduct from the pyridine-

deficient compound. Figure 4 shows the resulting spectra and the frequencies are 

listed in Table 12. Upon 4-Mepy coordination, the absorption frequencies exhibit a 

complete change from the values for the pyridine complex. These frequencies for 

coordinated 4-Mepy match values found in previously assigned complexes,and 

show very little shifting from the frequencies observed for the free ligand.̂ ® The mid-

IR bands have been attributed to carbon-carbon and carbon-hydrogen modes (like 

pyridine). The far-IR spectrum shows distinct bands at 545 cm"  ̂ due to a ring 

deformation mode and two ring torsion modes at 491 and 397 cm"\ The Mo-S 

stretching mode is obsen/ed at 384 cm"\ the Mo-N stretch at 273 cm'\ and the 

suggested Mo-Mo stretch at 214 cm'\ 

The propylamine adduct exhibits a characteristic mid-infrared spectrum as shown 

in Figure 5. Coordination results in noticeable shifting in the absorption frequencies 

from those noted for free n-propylamine.̂ ® However, peak assignment information 

can be gained from a previous study of coordinated propylamine complexes.®® 

Various N-H and C-N-H modes can be evidenced in the spectrum as follows: 

symmetric stretch at 3170 cm"\ bending at 1568 (In-plane) and 627 cm'̂  (out-of-

plane), twisting at 1213 cm'\ and wagging at 750 cm'\ A C-N mode is observed at 

1066 cm" ,̂ a C-C stretch at 997 cm'̂ , and two CHg rocking modes at 1038 and 860 
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cm~ .̂ The broad Mo-S stretching vibration is present at 384 cm'̂  and a broad IVIo-N 

mode (not very detectable from the spectrum shown) at 265 cm" .̂ 

The infrared spectrum for the pyrrolidine adduct (Figure 7) exhibits bands 

distinctive for pyrrolidine coordination. These bands are similar to previously reported 

pyrrolidine complexes®  ̂ and show noticeable shifting from the spectrum of the free 

ligand.®  ̂ The N-H stretching mode at 3194 cm"  ̂ and the Mo-N stretch at 273 cm'̂  

are similar to the reported modes at 3187 and 265 cm'\ respectively.®® The 

distinctive Mo-S stretching vibration is found at 381 cm'̂  and a weak Mo-Mo 

stretching mode may be associated with one of the bands observed at 235 or 214 

cm'\ 

The infrared spectrum of the piperidine adduct is shown in Figure 8. Coordination 

of piperidine results in very little shifting of the absorption frequencies as compared 

to the free ligand.®  ̂®  ̂ Bands attributable to N-H or C-N-H modes are present at 

3214,1311,1264,869, and 739 cm"  ̂with the remaining modes being carbon-carbon 

or carbon-hydrogen in nature. The Mo-S stretch is observed at 382 cm'̂ , the Mo-N 

stretch at 269 cm"\ and a Mo-Mo stretch at either 234 or 213 cm'\ The presence 

of excess piperidine in this complex can be observed by the N-H stretching mode 

present at 3287 cm'̂  which is nearly the same frequency as observed for the free 

ligand.®  ̂

The infrared spectra for the tetrahydrothiophene and triethylphosphine adducts 

of the MogSg cluster unit have been reported previously.̂  Similar spectra have been 

observed for the tungsten analogues,̂ ® however, little discussion has been made 
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concerning tlie spectra. Comparable values have been noted for the absorption 

frequencies of free tetrahydrothiophene^  ̂ and the previously reported tht 

complexes.®® The bands in the mid-infrared region (1306-808 cm"^) are generally 

due to CHg vibrations (wag, twist, and rock) along with carbon-carbon stretching 

modes. The far-IR bands at 515, 472, and 272 cm"  ̂ result from ring deformation 

modes and the Mo-S stretch is present around 389 cm"\ 

The infrared spectrum for the triethylphosphine adduct is shown in Figure 16. 

The absorption frequencies observed for this adduct are similar to those found in 

previous studies. A comparison of the mid-IR region (1416-733 cm'̂ ) for free and 

coordinated PEtg showed that these bands were mainly due to the various C-H 

modes (wagging and rocking).®  ̂ The bands in the far-IR region were found to be 

due to a carbon-phosphorus stretch (624 cm"^) and several CCP bending modes at 

404, 364, and 334 cm"^The Mo-S stretch is present at 390 cm"  ̂ and the peak 

at 236 cm'̂  is probably either a Mo-Mo stretch, or, a weak CCP bending mode which 

has been reported to occur around 245-270 cm" .̂ The band at 217 cm"  ̂ might also 

be assigned as a Mo-Mo mode. 

The usefulness of infrared spectroscopy can be observed for the spectrum shown 

in Figure 15. Bands for both propylamine and benzonitrile are found In this spectrum. 

The weak propylamine modes at 1564, 1067, 1041, and 998 cm*  ̂ are indicative of 

the coordinated ligand. The modes for benzonitrile are similar in value to free 

benzonitrile bands.®  ̂ Upon coordination, the CsN stretching mode should shift to 

higher wavenumbers due to strengthening of the C=N bond by bonding of the nitrogen 
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Figure 16. Mid/far-infrared spectrum (Nujol) of the crystalline triethylphosphine 
adduct from the reaction of the pyridine-deficient compound with 
triethylphosphine in dichloromethane. 
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lone pair. This shifting has been observed; where, upon coordination, the band 

moved from 2231 to 2257 cm'\̂ ° In the reaction with propylamine, the band is 

found at 2223 cm'̂  which is very close to the free benzonitrile value. Based on this 

observation, it can reasonably be assumed that the benzonitrile present in this 

reaction is not coordinated; therefore, it is included in the material. 

Raman Spectroscopy 

Infrared spectroscopy was found to lose significance during deligation studies 

because the Mo-S stretching mode broadened and was lost in the background of the 

spectrum. Therefore, it was difficult to observe if the cluster unit was still present 

after the heating and deligation. The technique of Raman spectroscopy was explored 

in order to gain information about the MàgSg cluster complexes prior to the deligation 

studies and after deligation (which will be discussed further in Paper 2). Initial 

interest focused on the crystalline complexes of piperidine, tetrahydrothiophene, and 

triethylphosphine. 

A spectrum of the crystalline piperidine adduct is shown in Figure 17. In this 

spectrum, the most distinguishing feature is the sharp peak at 408 cm'̂  which can 

be attributed to the Mo-S A^g stretching mode. This peak assignment results from 

reported assignments for MoS2^  ̂ and other molybdenum sulfide complexes.'̂ '̂̂  

The observed peaks for the MoSg spectrum were found at 409 (A^g). 383 

287 (E^g), and 118 (Egg^) cm'̂ . Only a limited number of Raman spectra have been 

reported for molybdenum sulfide complexes. In the study of a group of cyanothio-
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Figure 17. Raman spectrum of the piperidine adduct exhibiting the sharp Mo-S A^g mode at 408 
characteristic of a crystalline MogSg cluster complex. 
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moiybdates,̂  ̂a complex with a M04S4 core (Mo'") exhibited a Mo-S mode at 372 

cm'̂  and Mo-Mo modes at 228 (A^) and 192 (E) cm"\ Also, there was a report̂ ® 

concerning a complex containing the MoS^^" unit that showed a Mo-S A  ̂ mode at 

440 cm" .̂ 

Based on these reports showing that the predominant mode is due to the Mo-S 

A  ̂ interaction, the assignment of the peak at 408 cm'̂  was rather straightfonvard. 

However, further assignments are, at best, rather speculative. For this cluster, the 

idealized octahedral symmetry would result in Raman active modes of A^g, Eg, and 

Tgg for both the Mo-S and Mo-Mo interactions and produce mixing. Therefore, the 

shoulder band at 471 cm'̂  could be due to the Mo-S stretching modes of either Eg 

or Tgg types. The bands at 256 and 282 cm"  ̂ are possibly Mo-Mo Eg modes. The 

band at 117 cm'̂  could be Mo-S Eg or Mo-Mo type modes. Finally, the band at 808 

cm'̂  is most likely the first overtone of the Mo-S A^g mode. 

The Raman spectra of the nitrogen-ligated MogSg cluster complexes are shown 

in Figures 18 and 19. In Figure 18, all of the spectra show the presence of the Mo-S 

A^g band at 408-414 cm"\ Also, as the crystallinity of the material decreases, a 

broadening of the band can be observed. The crystalline piperidine adduct shows 

the sharpest peak, while the microcrystalline pyrrolidine, pyridine and 4-methylpyridine 

bands are weaker and broader. The other bands discussed previously at about 120, 

270,470, and 820 cm"  ̂are still present, even though they cannot be detected in this 

figure. Figure 20 shows the similar Raman spectra for the crystalline tetrahydro-

thiophene and triethylphosphine adducts with the Mo-S A^g mode at 414 cm" .̂ The 
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Figure 18. Raman spectra of the nitrogen-ligated adducts exhibiting the Mo-S 
mode at 408-414 cm" characteristic of a MogSg cluster unit. 

The degree of crystallinity is evidenced by the sharpness of the band 
for the crystalline piperldine adduct (a), as compared to poorly-
crystalline pyrrolidine (b), pyridine (c) and 4-methylpyridine (d). 
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19. Raman spectra of the ligand-deficient MogSg cluster complexes. The 
pyridine NagyMOgSg  ̂ (py)  ̂(a), propylamine (b), and tetrahydro-
thiophene (c) compounds exhibit a broad Mo-S band at 448 cm' . 
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Figure 20. Raman spectra of the tetrahydrothiophine (a) and triethylphosphine 
(b) adducts exhibiting the sharp Mo-S A^- mode at 414 cm"  ̂
characteristic of a crystalline MogSg cluster complex. 
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ligand-deficient cluster complexes produce a broadened Mo-S peak as observed In 

Figure 19. The peak center is at 448 cm~  ̂ which falls almost halfway between the 

Mo-S peaks found for the crystalline complexes. The broadening of the Mo-S band 

can be understood as the result of the formation of intercluster bonds. The formation 

of these intercluster bonds destroys the octahedral symmetry which produced the A^g 

mode and thus this mode is absent. However, this broad band is indicative of the 

cluster unit as supported by other spectroscopic techniques and will be used as a 

means of identifying the presence of the MogSg cluster unit upon further deligatlon 

reactions. 

X-ray Photoelectron Spectroscopy 

This technique was also explored for the MogSg cluster complexes in order to 

gain information about the materials prior to their subsequent deligation. The binding 

energies could be used to discover if cluster degradation was occurring and forming 

M0S2 and Mo metal or whether the cluster remained intact upon heating at various 

temperatures. Therefore, information about the molybdenum and sulfur binding 

energies of the cluster complexes was obtained. It was expected that these materials 

should have similar binding energies since the only difference was the coordinated 

ligand. 

The results of the XPS study are tabulated In Table 13. Previously, the only 

reported cluster complex, MOgSg(PEtg)g, showed molybdenum binding energies at 

227.8 (Sdg/g) and 231.0 eV (3d3/2) and sulfur binding energies at 161.1 (2P3/2) and 
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Table 13. X-ray photoelectron spectroscopy (XPS) data on MogSg cluster complexes. Data has been adjusted 
to the C Is binding energy of 284.6 eV. 

(pip)6 (Pyrr)y (py)y (4Mepy)y (PrNHg)/ (PEt3)6 (tht)6 My" 

Mo 3dgg 227.7 227.7 227.6 227.2 227.7 227.8 227.7 227.5 

Mo adgg 230.8 230.8 230.7 230.4 230.9 230.9 230.9 230.7 

S 2s 224.9 225.4 225.0 224.7 225.3 225.1 225.2 225.2 

S2P3  ̂ 160.7 160.6 160.6 160.3 160.6 161.0 160.7 160.7 

S 161.9 161.8 161.8 161.4 161.8 162.1 161.8 161.9 

^he propylamine and tetrahydrothiophene adducts are ligand-deficient 
%is peak is evidenced as a shoulder on the main S peak 
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162.1 eV (2pi/2).̂  ̂ The cluster complexes all exhibit Mo Sdg/g values between 227.2 

and 227.8 eV and Mo Sdg/g values between 230.4 and 230.9 eV. These values are 

slightly lower than reported for the triethylphosphine adduct, but still very close to 

each other. Likewise, the sulfur binding energies are very similar where the S 2P3/2 

values lie between 160.3 and 161.0 eV and the S 2p /̂2 values taken from the 

shoulders which lie between 161.4 and 162.1 eV. The sulfur 2s binding energies are 

also in a narrow range of 224.7 to 225.4 eV. These results do not differ much from 

the values observed for the Chevrel phases which range from 227.3-228.2 eV for the 

Mo 3dg/2 peak.®'"*  ̂ However, noticeable differences exist when compared to M0S2, 

a decomposition product (Figure 22b). The MoSg binding energies for molybdenum 

are found to be 229.5 (3d5/2) and 232.6 eV (3d3/2). The values for sulfur are 226.7 

(2s), 162.3 eV and 163.5 eV Similar binding energies for MoSg have 

been previously reported.̂ ® 

The XPS spectrum for the crystalline tetrahydrothiophene adduct, MOgSg(tht)g, 

is shown in Figure 21. The XPS spectrum exhibits distinct Mo 3d peaks separated 

by 3.15 eV and a broad S 2s peak at sliglitly lower binding energies. A similar 

spectrum for the pyridine adduct is shown in Figure 22a. The presence of surface 

oxide contamination is found for this sample of the pyridine complex. As observed 

in Figure 21b, the tht adduct exhibits resolvable peaks for both cluster sulfide and 

organo-suifur from the ligand. The organo-sulfur peaks are located at 162.9 (2P3/2) 

and 164.1 eV (2pf̂ ). Similar peaks are also found for the ligand-deficient tht 

complex at 163.1 (2P3/2) and 164.3 eV 
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Figure 21. Uncorrected XPS spectra of the crystalline tetrahydrothiophine 
adduct showing the Mo 3d and S 2s bands (a). The S 2p bands (b) 
are resolvable into the cluster-sulflde and llgand organo-sulfur peaks. 
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Figure 22. Uncorrected XPS spectra for the pyridine adduct (a) and MoSg (b) 
showing the Mo 3d and S 2s peaî s for these compounds. Weak 
bands due to surface oxide contamination are evidenced in these spectra. 
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Crystal Structures 

The molecular complexes prepared in this research all contain the hexa-

molybdenum cluster unit MogS'gL^g. This cluster unit can be viewed as an 

octahedron of molybdenum atoms with eight triply bridging sulfur atoms capping the 

octahedral faces. Each molybdenum also possesses an additional terminal 

coordination site located at the vertex of the octahedron, which is occupied by the 

nitrogen-donor ligands. The structures with pyridine, piperidine, and pyrrolidine 

ligands will be discussed. 

The pyridine adduct was found to crystallize with two different morphologies -

brown chunks and brown cubes. The chunky crystals are formulated as MogSg(py)g-

1.65 py and belong to the triclinic space group PT with two molecules per unit cell. 

A triclinic form was evidenced previously in the tungsten sulfide cluster complex, 

WgSg(py)g,̂ ® and the molybdenum sulfide/chloride complex, M06SgCl2(py)g,'̂ ® with 

only one molecule per unit cell. These two complexes are isostructural and contain 

a much smaller unit cell of about a=10.7 Â, b=11.9 A, c=9.4 A. This new triclinic 

phase contains a larger unit cell of a=11.6 A, b=12.2 A, c=22.0 A. 

All of the atoms in the cluster unit and the pyridine solvent are located in general 

positions. A diagram of the cluster complex is shown in Figure 23 and the unit cell 

in Figure 24. Selected bond distances and bond angles are given in Tables 14 and 

15, respectively. The average Mo-Mo bond distance is 2.640(4) A with a maximum 

difference of 0.026 A. The average Mo-S bond distance is 2.453(10) A and the 

average Mo-N bond distance is 2.274(36) A. 
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Figure 23. A ball and stick representation of the cluster unit in the triclinic 
M06S8(py)6 • 1.65 py. 
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Figure 24. A view of the unit cell in the triclinic MogSg(py)g • 1.65 py. 
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Table 14. Selected bond distances (A) in MogSg(py)g • 1.65 py 

Mol - Mo2 2.652 (4) Mo1 - 31 2.459 12) 
Mol - Mo3 2.631 (4) Mo1 - S4 2.450 12) 
Mol - Mo5 2.631 (4) Mol - S5 2.457 7) 
Mol - Mo6 2.628 (5) Mol - S7 2.451 8) 
Mo2 - Mo3 2.643 (4) Mo2 - 81 2.460 9) 
Mo2 - Mo4 2.642 (5) Mo2 - 85 2.440 10) 
Mo2 - Mo5 2.633 (6) Mo2 - 86 2.460 9) 
Mo3 -Mo4 2.652 (4) Mo2 - 88 2.457 9) 
Mo3 - Mo6 2.635 (6) Mo3 - 81 2.450 11) 
Mo4 - Mo5 2.654 (4) Mo3 - S2 2.457 11) 
Mo4 - Mo6 2.640 (4) Mo3 - 87 2.443 10) 
Mo5 -Mo6 2.638 (4) Mo3 - 88 2.456 9) 
avg Mo-Mo 2.640 (4) Mo4 - 82 2.455 7) 

Mo4 - 83 2.456 13) , 
Mol - NI 2.267 (40) Mo4 - 86 2.452 7) 
Mo1 - NI' 2.300 (39) Mo4 - 88 2.460 12) 
Mo2 - N2 2.248 (30) Mo5 - S3 2.454 11) 
Mo3 - N3 2.255 (26) Mo5 - 84 2.443 9) 
Mo4 - N4 2.329 (25) Mo5 - 85 2.444 11) 
Mo5 - N5 2.239 (25) Mo5 - 86 2.448 9) 
Mo6 - N6 2.283 (35) Mo6 - 82 2.470 10) 
avg Mo-N 2.274 (36) Mo6 - 83 2.458 10) 

Mo6 - 84 2.451 9) 
Mo6 - 87 2.450 10) 
avg Mo-8 2.453 10) 
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Table 15. Selected bond angles (deg) in MogSg(py)g • 1.65 py 

Mo2- Mol - Mo3 60.0 (1) Mo1 - S1 - Mo2 65.3 (3) 
Mo2- Mol - Mo5 59.8 (1) Mo1 - S1 - Mo3 64.8 (3) 
Mo3 - Mol - Mo6 60.1 (1) Mo2 - SI - Mo3 65.2 (3) 
Mo5 - Mol - Mo6 60.2 (1) Mo3 - S2 - Mo4 65.3 (2) 
Mol - Mo2- Mo3 59.6 (1) Mo3 - S2 - Mo6 64.7 (2) 
Mol - Mo2 - Mo5 59.7 (1) Mo4 - S2 - Mo6 64.8 (2) 
Mo3 - Mo2 - Mo4 60.2 (1) Mo4 - S3 - Mo5 65.5 (3) 
Mo4 - Mo2 - Mo5 60.4 (1) Mo4 - S3 - Mo6 65.0 (3) 
Mol - Mo3 - Mo2 60.4 (1) Mo5 - S3 - Mo6 65.0 (3) 
Mol - Mo3 - Mo6 59.9 (1) Mol - S4 - Mo5 65.1 (3) 
Mo2 - Mo3 - Mo4 59.9 (1) Mol - S4 - Mo6 64.9 (3) 
Mo4 - Mo3 - Mo6 59.9 (1) Mo5 - S4 - Mo6 65.2 (2) 
Mo2 - Mo4 - Mo3 59.9 (1) Mol - S5 - Mo2 65.6 (2) 
Mo2 - Mo4 - Mo5 59.6 (1) Mol - S5 - Mo5 64.9 (2) 
Mo3 - Mo4 - Mo6 59.7 (1) Mo2 - S5 - Mo5 65.2 (3) 
Mo5 - Mo4 - Mo6 59.8 (1) Mo2 - S6 - Mo4 65.1 (2) 
Mol - Mo5 - Mo2 60.5 (1) Mo2 - S6 - Mo5 64.9 (2) 
Mol - Mo5- Mo6 59.8 (1) Mo4 - S6 - Mo5 65.6 (2) 
Mo2 - Mo5 - Mo4 60.0 (1) Mo1 - S7 - Mo3 65.0 (2) 
Mo4 - Mo5 - Mo6 59.8 (1) Mo1 - S7 - Mo6 64.8 (2) 
Mol - Mo6 - Mo3 60.0 (1) Mo3 - S7 - Mo6 65.2 (2) 
Mol - Mo6 - Mo5 59.9 (1) Mo2 - S8 - Mo3 65.1 (3) 
Mo3 - Mo6 - Mo4 60.4 (1) Mo2 - S8 - Mo4 65.0 (3) 
Mo4 - Mo6 - Mo5 60.4 (1) Mo3 - 38 - Mo4 65.3 (3) 

avg Mo-Mo-Mo 60.0 (1) avg Mo-S-Mo 65.1 (3) 

Mo2 - Mo1 - Mo6 89.8 (1) Mo2 - Mo4 - Mo6 89.8 (1) 
Mo3 - Mo1 - Mo5 90.3 (1) Mo3 - Mo4 - Mo5 89.4 (1) 
Mol - Mo2 - Mo4 89.9 (1) Mol - Mo5 - Mo4 90.1 (1) 
Mo3 - Mo2 - Mo5 90.0 (1) Mo2 - Mo5 - Mo6 90.0 (1) 
Mol - Mo3 - Mo4 90.2 (1) Mo1 - Mo6 - Mo4 90.5 (1) 
Mo2 - Mo3- Mo6 89.9 (1) Mo3 - Mo6 - Mo5 90.1 (1) 

avg Mo-Mo-Mo 90.0 (1) 
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SI - Mol - S5 89.0 (3) 
SI - Mo1 - S7 90.0 (3) 
S4 - Mol - S5 90.1 (3) 
S4 - Mol - S7 90.2 (3) 
SI - Mo2 - S5 89.4 (3) 
SI - Mo2 - S8 89.5 (3) 
S5 - Mo2 - S6 90.0 (3) 
S6 - Mo2 - S8 90.4 (3) 
SI - Mo3 - S7 90.4 (3) 
SI - Mo3 - SB 89.8 (3) 
S2 - Mo3 - S7 90.0 (3) 
S2 - Mo3 - S8 89.2 (3) 
S2 - Mo4 - S3 90.7 (3) 
S2 - Mo4 - S8 89.2 (3) 
S3 - Mo4 - S6 88.8 (3) 
S6 - Mo4 - S8 90.5 (3) 
S3 - Mo5 - S4 89.6 (3) 
S3 - Mo5 - S6 89.0 (3) 
S4 - Mo5 - S5 90.6 (3) 
S5 - Mo5 - S6 90.2 (3) 
S2 - Mo6 - S3 90.3 (3) 
S2 - Mo6 - S7 89.5 (3) 
S3 - Mo6 - S4 89.3 (3) 
S4 - Mo6 - S7 90.2 (3) 

avg S-Mo-S 89.8 (3) 

SI - Mol S4 173.6 (3 
S5 - Mol S7 173.4 (3 
SI - Mo2 S6 173.3 (3 
S5 - Mo2 S8 173.8 (4 
S1 - Mo3 S2 174.0 (3 
S7 - Mo3 S8 174.0 (3 
S2 - Mo4 S6 173.6 (3 
S3 - Mo4 S8 173.1 (3 
S3 - Mo5 S5 173.7 (3 
S4 - Mo5 S6 174.1 (3 
S2 - Mo6 S4 173.8 (4 
S3 - Mo6 S7 173.9 (4 

avg S-Mo-S 173.7 (3 
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Difficulties in obtaining a good structure solution for the triclinic pyridine adduct 

prompted further study and resulted in the discovery of the brown cube-shaped 

crystals. This material, IVl0gSg(py)g 2py, crystallizes in the cubic space group Pa? 

with four molecules per unit cell. This space group was previously observed in the 

molybdenum sulfide/choride double salt- (CgHgNH)g [(IVIOgClyS)Clg] 3(CgHgNH)CI 

which also contained four molecules per unit cell. 

The MogSg cluster is centered on a? position (4b). One of the sulfur atoms, S1, 

is located on a 3-fold position (8c), while the remaining atoms are all found to reside 

on general positions. The pyridine solvent molecule is disordered about the center 

of the 3-fold position (8c). The cluster complex and unit cell diagrams are shown in 

Figures 25 and 26, respectively. Selected bond distances and bond angles are listed 

in Table 16. The average Mo-Mo bond distance is 2.644(2) Â with a maximum 

difference of 0.006 Â. The average Mo-S bond distance is 2.462(3) Â and the unique 

Mo-N distance is 2.283(9) Â. 

The piperidine adduct, MogSg(pip)g- 7pip, crystallizes in the tetragonal space 

group 17 with eight molecules per unit cell. The MogSg cluster unit is centered on a 

2-fold position (4e). Also, one piperidine solvent molecule is disordered about the 

same 2-fold position (4e). A diagram of the cluster complex is shown in Figure 27. 

The coordination of the piperidine ligands by bonding through equatorial positions is 

evidenced in Figure 28. The unit cell diagram is shown in Figure 29. Selected bond 

distances and bond angles are listed in Tables 17 and 18, respectively. The average 

Mo-Mo bond distance is 2.649(1) A with a maximum difference of 0.021 Â. 
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Figure 25. A view of the cluster unit in the cubic MogSg(py)g • 2 py. Thermal 
ellipsoids are shown at the 30% probability level. Hydrogen atoms 
have been omitted for clarity. 
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Figure 26. A view of tfie unit cell in the cubic MoçSg(py)Q- 2py. The pyridine 
solvent molecules have been darkened to indicate their location and 
clusters have been omitted for clarity. 
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Table 16. Selected bond distances (Â) and angles (deg) In MogSg(py)g • 2 py 

Mo - Mo(B) 2.641 (2) Mo - N 2.283 (9) 
Mo - Mo(D) 2.647 (2) N -C(1) 1.340 (15) 
avg Mo-Mo 2.644 (2) N -C(5) 1.317(16) 

avg N-C 1.328(16) 
Mo - 8(2) 2.467 (3) 0(1) - 0(2) 1.338 (19) 
Mo - 8(1 A) 2.465 (2) 0(2) - 0(3) 1.321 (24) 
Mo - 8(2A) 2.461 (3) 0(3) - C(4) 1.366(22) 
Mo - 8(2B) 2.455 (3) 0(4) - 0(5) 1.385 (20) 
avg Mo-S 2.462 (3) avg C-C 1.352 (21) 

Mo(B) - Mo - Mo(D) 90.0 (1) 8(2) - Mo - 8(1A) 90.1 (1) 
Mo(B) - Mo - Mo(E) 60.0 (1) 8(1A) - Mo - 8(2A) 90.2 (1) 
Mo(D) - Mo - Mo(E) 60.1 (1) 8(2) - Mo - 8(2B) 89.4 (1) 

8(2A) - Mo - 8(2B) 89.6 (1) 
Mo(A) -8(1) - Mo(C) 64.8 (1) 8(2) - Mo - 8(2A) 173.6 (1) 
Mo -8(2) - Mo(D) 65.1 (1) 8(1 A) - Mo - 8(2B) 174.2(1) 
Mo -8(2) - Mo(E) 64.8 (1) 

8(2) - Mo . N 93.4 (2) 
8(1A) - Mo - N 93.1 (2) 
8(2A) - Mo - N 93.0 (2) 
8(2B) - Mo - N 92.7 (2) 
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Figure 27. A view of the cluster unit in MogSg(pip)g • 7 pip. Thermal 
ellipsoids are shown at the 30% probability level. Hydrogen 
atoms have been omitted for clarity. 



www.manaraa.com

121 

Figure 28. A view of MOgSg(pip)g • 7 pip showing the equatorial coordination 
of the piperidine ligands to the MogSg cluster unit. Thermal 
ellipsoids are shown at the 30% probability level. 
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Figure 29. A view of tlie unit cell in ̂ ^OgSg(pip)g • 7 pip. Clusters have been 
omitted for clarity. 
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Table 17. Selected bond distances (A) in MogSg(pip)g • 7 pip 

Mo(1) - Mo(2) 2.652 (1) 
Mo(1) - Mo(3) 2.640 (1) 
Mo(1) - Mo(2A) 2.653 (1) 
Mo(1) - Mo(3A) 2.653 (1) 
Mo(2) - Mo(3) 2.658 (1) 
Mo(2) - Mo(2A) 2.637 (1) 
Mo(3) - Mo(3A) 2.652 (1) 
avg M0.M0 2.649 (1) 

Mo(1) -N(1) 2.322 (4) 
Mo(2) -N(2) 2.321 (5) 
Mo(3) -N(3) 2.308 (5) 
avg Mo.N 2.317 (5) 

Mo(1) -S(1) 2.448 (2) 
Mo(1) -S(3) 2.446 (2) 
Mo(1) -S(4) 2.456 (1) 
Mo(1) - S(2A) 2.460 (1) 
Mo(2) -S(1) 2.463 (2) 
Mo(2) -S(2) 2.456 (2) 
Mo(2) -S(4) 2.465 (2) 
Mo(2) - S(1A) 2.448 (2) 
Mo(3) -8(2) 2.452 (2) 
Mo(3) -S(3) 2.444 (2) 
Mo(3) -S(4) 2.456 (2) 
Mo(3) - S(3A) 2.431 (2) 
avg Mo-S 2.452 (2) 

coordinated pioeridine 
N(1)-C(11) 1.455(9) 
N(1)-C(15) 1.457(10) 
C(11)-C(12) 1.537(9) 
C(12)-C(13) 1.471 (13) 
C(13)-C(14) 1.522(13) 
0(14). 0(15) 1.541 (10) 

N(2) - 0(21) 1.457(8) 
N(2) - 0(25) 1.479(9) 
0(21)-0(22) 1.527(10) 
0(22)-0(23) 1.537(12) 
0(23)-0(24) 1.526(12) 
0(24)-0(25) 1.527(11) 

N(3)-C(31) 1.435(12) 
N(3)-C(35) 1.487(12) 
0(31)-0(32) 1.558(14) 
0(32)-0(33) 1.501 (19) 
0(33)-0(34) 1.421 (19) 
0(34)-0(35) 1.552(15) 

N(6)-0(61) 1.424(10) 
N(6) - 0(65) 1.468(10) 
0(61)-0(62) 1.476(12) 
0(62)-0(63) 1.509(14) 
0(63)-0(64) 1.499(14) 
0(64)-0(65) 1.512(14) 

pioeridine - solvent of crystallization 
N(4)-0(41) 1.418(14) N(5) - 0(51) 1.443(11) 
N(4) - 0(45) 1.471 (16) N(5) - 0(55) 1.411 (11) 
0(41)-0(42) 1.379(18) 0(51)-0(52) 1.533(13) 
0(42). 0(43) 1.462(18) 0(52)-0(53) 1.502(12) 
0(43)-0(44) 1.497(19) 0(53)-0(54) 1.519(13) 
0(44). 0(45) 1.270(20) 0(54)-0(55) 1.503(13) 
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Table 18. Selected bond angles (deg) in MogSg(pip)Q • 7 pip 

Mo(2) - Mo(1) - Mo(3) 60.3 
Mo(2) - Mo(1) - Mo(2A) 59.6 
Mo(3) - Mo(1) - Mo(3A) 80.1 
Mo(2A)-• Mo(1) 1 - Mo(3A) 60.1 
Mo(1) - Mo(2) - Mo(3) 59.6 
Mo(3) - Mo(2) - Mo(1A) 60.0 
Mo(1) - Mo(2) - Mo(2A) 60.2 
Mo(1A)-• Mo(2) 1 - Mo(2A) 60.2 
Mo(1) - Mo(3) - Mo(2) 60.1 
Mo(2) - Mo(3) - Mo(1A) 59.9 
Mo(1) - Mo(3) - Mo(3A) 60.2 
Mo(1A)-• Mo(3) 1 - Mo(3A) 59.7 

avg Mo-Mo-Mo 60.0 
Mo(3) - Mo(1) - Mo(2A) 90.2 
Mo(2) - Mo(1) - Mo(3A) 89.9 
Mo(1) - Mo(2) - Mo(1A) 89.8 
Mo(3) - Mo(2) - Mo(2A) 90.2 
Mo(1) - Mo(3) - Mo(1A) 90.1 
Mo(2) - Mo(3) - Mo(3A) 89.8 

avg Mo-Mo-Mo 90.0 
Mo(1) - S(1)- Mo(2) 65.4 
Mo(1) - S(1)- Mo(2A) 65.6 
Mo(2) - 8(1)- Mo(2A) 64.9 
Mo(2) - 8(2)- Mo(3) 65.6 
Mo(2) - 8(2)- Mo(1A) 65.3 
Mo(3) - 8(2)- Mo(1A) 65.4 
Mo(1) - 8(3)- Mo(3) 65.4 
Mo(1) - 8(3)- Mo(3A) 65.9 
Mo(3) - 8(3)- Mo(3A) 65.9 
Mo(1) - 8(4)- Mo(2) 65.2 
Mo(1) - 8(4)- Mo(3) 65.0 
Mo(2) - 8(4)- Mo(3) 65.4 

avg Mo-S-Mo 65.4 

1) 8(1) - Mo(1) - 8(4) 90.0 
1) 8(3) - Mo(1) - 8(4) 90.6 
1) 8(1) - Mo(1) - 8(2A) 89.4 
1) 8(3) - Mo(1) - 8(2A) 89.3 
1) 8(1) - Mo(2) - 8(4) 89.4 
1) 8(2) - Mo(2) - 8(4) 89.3 
1) 8(1) - Mo(2) - 8(1A) 91.0 
1) 8(2) - Mo(2) - S(1A) 89.5 
1) 8(2) - Mo(3) - 8(4) 89.6 
1) 8(3) - Mo(3) - 8(4) 90,6 
1) 8(2) - Mo(3) - 8(3A) 89,8 
1) 8(3) - Mo(3) - 8(3A) 89.1 
1) avg S-Mo-S 89.8 
1) 8(1) - Mo(1) - 8(3) 173.3 
1) 8(4) - Mo(1) - S(2A) 173.3 
1) 8(1) - Mo(2) - 8(2) 173.0 
1) 8(4) - Mo(2) - 8(1 A) 173.5 
1) 8(2) - Mo(3) - 8(3) 173.0 
1) 8(4) - Mo(3) - 8(3A) 173.6 
1) avg 8-M0-8 173.3 
1) 8(1) - Mo(1) - N(1) 90.6 
1) 8(3) - Mo(1) - N(1) 96.1 
1) 8(4) - Mo(1) - N(1) 89.3 
1) S(2A)- Mo(1) - N(1) 97.3 
1) 8(1) - Mo(2) - N(2) 94.0 
1) 8(2) - Mo(2) - N(2) 93.0 
1) 8(4) - Mo(2) - N(2) 97.6 
1) 8(1 A)- Mo(2) - N(2) 88.9 
1) 8(2) - Mo(3) - N(3) 92.7 
1) 8(3) - Mo(3) - N(3) 94.4 
1) 8(4) - Mo(3) - N(3) 91.5 
1) 8(3A)- Mo(3) - N(3) 94.8 
1) avg S-Mo-N 93.4 
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The average Mo-S bond distance is 2.452(2) Â and the average Mo-N distance is 

2.317(5) Â. 

The pyrrolidine adduct MogSg(pyrr)g • Ipyrr, crystallizes in the tetragonal space 

group 14 /̂a with sixteen molecules per unit cell. Two independent cluster units are 

found in the asymmetric unit where cluster 1 is located on a 2-fold position (8e) and 

cluster 2 is positioned on an inversion center (8d). The two cluster units are shown 

in Figure 30. Again, difficulties were observed in the refinement of the pyrrolidine 

carbon positions which led to the large errors in the observed bond lengths (Table 19) 

and bond angles (Table 20). This disorder can also be observed for the pyrrolidine 

rings found in the unit cell diagram shown in Figure 31. The average Mo-Mo bond 

distance is 2.649(3) A with a maximum difference of 0.030 A. The average Mo-S 

bond distance is 2.446(6) A and the average Mo-N distance is 2.309(21) A. 

The bond distances for these nitrogen ligand based MogSgLg cluster complexes 

can be compared to the previously reported rhombohedral triethylphosphine (R?) and 

cubic tetrahydrothiophene (Ia3) complexes. The distances are tabulated in Table 21. 

The reported bond distances for Mo-Mo of 2.640-2.658 A and Mo-S of 2.430-2.462 

A are very similar for these complexes and indicate that the MogSg octahedron is 

relatively unperturbed by the differing ligands. A distinct difference can be noted 

when comparing the undistorted octahedra in the MogSgLg clusters with the trigonally 

distorted cluster units found in the Chevrel phase compounds. 

In the Chevrel phases, the octahedra are elongated along the 3-fold axis which 

result in a shortening of the Mo-Mo bonds in the Mog triangles which lie perpendicular 
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Mo(21) 

Mo(23) 

Mo(13) 

Mo{12)^  

S(14)er \  

Figure 30. A view of tlie two cluster units found for MogSg(pyrr)g • 1 pyrr. 
Thermal ellipsoids are shown at the 30% probability level. Only 
the nitrogens of the pyrrolidine ligands are Indicated. 
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Figure 31. A view of the unit cell in MogSg(pyrr)g • 1 pyrr. Clusters have 
been omitted for clarity. 
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Table 19. Selected bond distances (Â) in Mo0Sg(pyrr)g • 1 pyrr 

Moll -Mo12 2.645 (3) Mo21 -Mo22 2.646 (3) 
Mo11 - Mol 3 2.666 (3) Mo21 - Mo23 2.642 (3) 
Moll - Moll A 2.636 (4) Mo21 - Mo22A 2.662 (3) 
Moll - Mo13A 2.644 (3) Mo21 - Mo23A 2.649 (3) 
Mol 2 -Mo13 2.637 (3) Mo22 -Mo23 2.643 (3) 
Mo12 -Mo12A 2.670 (4) Mo22 - Mo23A 2.651 (3) 
Mo12 - Mo13A 2.649 (3) avg Mo-Mo 2.649 (3) 

Moll -811 2.464 (6) Mo21 -821 2.422 (7) 
Moll -S13 2.446 (6) Mo21 -822 2.449 (7) 
Mo11 -S14 2.437 (6) Mo21 -824 2.450 (6) 
Mo11 -S13A 2.438 (6) Mo21 -823A 2.447 (6) 
Mo12 -811 2.452 (6) Mo22 -821 2.422 (7) 
Mo12 -812 2.458 (6) Mo22 -823 2.451 (7) 
Mol 2 -814 2.435 (6) Mo22 -824 2.440 (7) 
Mol 2 -812A 2.442 (6) Mo22 -822A 2.450 (6) 
Mo13 -811 2.451 (6) Mo23 -821 2.436 (7) 
Mo13 -812A 2.446 (6) Mo23 -822A 2.466 (6) 
Mo13 -813A 2.454 (6) Mo23 -823A 2.444 (6) 
Mol 3 -814A 2.434 (6) Mo23 -824A 2.467 (7) 

avg Mo-8 2.446 (6) 

Moll -Nil 2.286(19) Mo21 -N21 2.293 (18) 
Mo12 -N12 2.290 (18) Mo22 -N22 2.236 (21) 
Mo13 -N13 2.286 (18) Mo23 -N23 2.425 (32) 

avg Mo-N 2.303 (21) 
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Table 20. Selected bond angles (deg) in MogSg{pyrr)g • 1 pyrr 

Mo12 - Moll - M0I3 59.6 (1) Mo22 - Mo21 - Mo23 60.0 1) 
Mo12 - M0II - Mo13A 60.1 (1) Mo22- Mo21 - Mo23A 60.1 1) 
Mol 3 - M0II - Moll A 59.8(1) Mo23 - Mo21 - Mo22A 60.0 1) 
M0IIA Moll - Mo13A 60.6 (1) Mo22A-Mo21 - Mo23A 59.7 1) 
M0II - M0I2 - M0I3 60.6 (1) Mo21 - Mo22 -Mo23 59.9 1) 
Moll - M0I2 - Mo13A 59.9 (1) Mo21 - Mo22 - Mo23A 60.0 1) 
M0I3 - M0I2 . M0I2A 59.9 (1) Mo23 - Mo22 - Mo21A 59.9 1) 
Mo12A 

CM 1
 - Mo13A 59.4 (1) M02IA Mo22 - Mo23A 59.6 1) 

M0II - Mo13 - M0I2 59.8 (1) Mo21 - Mo23 - Mo22 60.1 1) 
Moll - M0I3 - Moll A 59.5 (1) Mo21 - Mo23 -Mo22A 60.4 1) 
M0I2- M0I3 - Mo12A 60.7 (1) Mo22 - Mo23 - M02IA 60.4 1) 
M0IIA 1

 
CO
 

-Mo12A 60.0 (1) M02IA -Mo23 - Mo22A 59.9 1) 
avg Mo-Mo-Mo 60.0 1) 

M0I2 - M011 -Moll A 90.4 (1) Mo22- Mo21 -Mo22A 90.1 1) 
M0I3 - M011 - Mo13A 89.8(1) Mo23 - Mo21 - Mo23A 89.7 1) 
Moll - M012 - Mo12A 89.6 (1) Mo21 - Mo22 - M02IA 89.9 1) 
M0I3 - M012 - Mo13A 90.2 (1) Mo23 - Mo22 - Mo23A 89.6 1) 
M0II - M013 - M0I2A 89.6 (1) Mo21 - Mo23 - M02IA 90.3 1) 
M0I2 - M013 - Moll A 90.4 (1) Mo22 - Mo23 - Mo22A 90.4 1) 

avg Mo-Mo-Mo 90.0 1) 

M0II •811 - M0I2 65.1 (1) Mo21 -821 - Mo22 66.1 2) 
M0II •811 - M0I3 65.7 (1) Mo21 -821 - Mo23 65.7 2) 
M0I2 •811 - M0I3 65.1 (1) Mo22 •821 - Mo23 65.9 2) 
M0I2 -812 - M0I2A 66.0 (2) Mo21 -822- Mo22A 65.8 2) 
M0I2 •812- Mo13A 65.4 (2) Mo21 822- Mo23A 65.2 2) 
Mo12A -812 - Mo13A 65.3 (2) Mo22A -822 - Mo23A 65.0 2) 
M0II •813- Mol l  A 65.3 (2) Mo22 -823- M02IA 65.8 2) 
M0II •813- Mo13A 65.3 (1) Mo22 -823- Mo23A 65.6 2) 
Moll A -813 • Mo13A 66.0 (1) M02IA -823 - Mo23A 65.4 2) 
M0II -814- M0I2 65.8 (1) Mo21 -824- Mo22 65.5 2) 
M0II •814- Mo13A 65.8 (1) Mo21 -824- Mo23A 65.2 2) 
M0I2 -814- Mo13A 65.9 (1) Mo22 -824- Mo23A 65.4 2) 

avg M0-8-M0 65.6 2) 
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Table 21. Bond distances and bond order calculations for the MOgSgLg cluster complexes. 

formula Mo-Mo Mo-S Mo-L est. Mo-L® BO(Mo-Mo)'' BO(Mo-L)® 

MOgSgtPEtglgaDCM 2.6584 (5) 2.446 (1) 2.524 (1) 2.50 0.843 (1) 0.91 (1) 

MOgSgfthtlg 2.640 (4) 2.430 (8) 2.576 (8) 2.44 0.905 (14) 0.59 (2) 

M06Sg(py)6-1.65py 2.640 (4) 2.453(10) 2.274 (36) 2.11 0.905 (14) 0.53 (7) 

MOgSgfpylgZpy 2.644 (2) 2.462 (3) 2.283 (9) 2.11 0.891 (7) 0.53 (2) 

WOgSgfpipigTpip 2.649 (1) 2.454 (2) 2.317 (5) 2.11 0.874 (3) 0.45 (1) 

2.649 (3) 2.446 (6) 2.309 (21) 2.11 0.874 (10) 0.47 (4) 

^Estimated single bond distance from Pauling covalent radii r(N). r(S), and the calculated covalent radius of the 
molybdenum atom r(Mo) = d(Mo-S) - r(S), where d(Mo-S) distance is the value from the table. 

^Estimated bond order from Pauling bond order equation, d(n) = d(1) - 0.6 log n, where d(n) is the observed 
Mo-Mo distance and d(1) is the estimated Mo-Mo single bond distance, 2.614 Â. 

'̂ Estimated bond order from Pauling bond order equation, d(n) = d(1 ) - 0.6 log n, where d(n) is the observed 
Mo-L distance and d(1) is the estimated Mo-L single bond. 
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to the 3-fold axis. The Mo-Mo bond distances within the Mog triangles range from 

2.654 (ErMogSg) to 2.698 Â (MOgSg) and the distances between triangles range from 

2.681 (Cug ggMogSg) to 2.862 Â (MOgSg).̂ '̂  This distortion results from a close 

approach between cluster units and formation of a weak intercluster Mo-Mo bond as 

evidenced by the distance of 3.084 Â for the highly distorted MOgSg. The isolated 

MOgSgLg cluster units show no intercluster Mo-Mo bonding and negligible distortion 

of the octahedron. The Chevrel phases exhibit average Mo-S distances of about 2.44 

to 2.46 A which are very similar to the distances observed for the MogSgLg cluster 

units. 

The application of bond order calculations has proven useful in understanding the 

stability of the cluster unit relative to the loss of ligands in subsequent deligation 

studies. The bond order for metal-metal or metal-ligand bonds can be determined 

by using Pauling's bond order equation"^  ̂shown below in equation 2, 

d(n) = d(1) - 0.6 log n (2) 

where d(n) is the observed bond distance, d(1) is the single bond distance, and n is 

the bond order. The calculations for the Mo-Mo and Mo-L bond orders are given in 

Table 21. The estimated Mo-Mo bond distance, d(n), for the MogSg unit was found 

to be 2.662 A, where d(1) = 2.614 A was used as the Mo-Mo single bond value and 

n = 20/24 = 0.833 was used as the bond order. The calculated Mo-Mo bond orders 

for the MOgSgLg complexes were observed to range from 0.843 to 0.905, which are 

in reasonable agreement with the expected value of 0.833 for the 20 electron cluster 

compounds. 
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Bond order calculations for the Mo-L bonds indicate that the strength of the 

bonding between the cluster and coordinated ligands differs significantly depending 

upon the terminal ligand. The value for the triethylphosphine adduct is much greater 

than what is observed for the sulfur- or nitrqgen-donor ligands. Also, it is noted that 

the nitrogen-based ligands, with piperidine in particular, show the weakest Mo-L 

bonding and thus should be the easiest ligands to remove upon deligation. The Mo-L 

bond order values for MOgSgLg complexes are quite similar to the values that were 

previously reported for the tungsten cluster complexes^® as evidenced in Table 22. 
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Table 22. Bond distances and bond order calculations for the WgSgLg cluster complexes. 

formula W-W W-S W-L est. W-L® BO (W-L)b 

WgS8(PEt3)6l.44DCM 2.6732 (3) 2.452 (3) 2.513 (1) 2.51 1.00 

^6Sg(tht)g 2.653 (3) 2.440 (6) 2.548 (9) 2.45 0.68 

2.6617 (2) 2.458 (3) 2.255 (5) 2.11 0.56 

^Estimated single bond distance from Pauling covalent radii r(P), r(S), r(N), and the calculated covalent radius 
of the tungsten atom r(W) = d(W-S) - r(S), where d(W-S) is the average distance 2.45 Â in these clusters. 

'̂ Estimated bond order from Pauling bond order equation, d(n) = d(1) - 0.6 log n, where d(n) is the observed 
W-L distance and d(1) is the estimated W-L single bond distance, 2.630 Â. 
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CONCLUSIONS 

This paper describes the preparation and characterization of molecular MOgSgLg 

cluster complexes. Previously reported adducts of pyridine, propylamine, and 

tetrahydrothiophene were studied in order to improve their preparation for higher 

yields or to gain information by further characterization. New complexes were found 

with the nitrogen-donor ligands of 4-methylpyridine, pyrrolidine, and piperidine. 

In an attempt to improve the two-step preparative route to the completely sulfur-

substituted cluster, MogSs(py)x, it was discovered that this compound had been 

misformulated. Both the previous two-step route and the new one-step method with 

higher stoichiometric amounts of the sulfiding agent, NaSH, resulted in a similar 

product which contained sodium, Na2yMogSg_^y(py) .̂ In this procedure, the pyridine 

content was found to be variable and depended upon the reaction conditions. 

This pyridine-deficient material was quite amenable to undergoing ligand 

exchange reactions. Further reaction in neat pyridine produced the crystalline 

hexapyridine complex which existed in two different morphologies. The chunk-like 

crystals possessed triclinic symmetry which was also observed for the pyridine 

adducts of the tungsten and molybdenum sulfide/chloride compounds. Furthermore, 

a new form was also structured which showed cubic symmetry in the space group 

PaU. 

Reaction of the pyridine-deficient material with n-propylamlne resulted in the 

formation of the reactive propylamine adduct. The propylamine ligands were found 
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to be more weakly bound to the MogSg cluster unit, which allowed for facile ligand 

exchange and the preparation of new complexes with pyrrolidine and piperidine. 

These adducts crystallized in tetragonal space groups. Also, they were soluble in 

organic solvents which allowed for study by NMR spectroscopy. The complexes 

showed spectra consistent with the presence of both coordinated and "free" ligands. 

The free ligands appear to result from strong hydrogen bonding interactions and 

remain in the complexes even after extended drying under dynamic vacuum. Two-

dimensional NMR studies on the piperidine adduct have resulted in tentative 

assignments for the protons. Also, the structure solution has shown that the 

piperidine ligands are coordinated via equatorial positions. 

Characterization of these molecular MogSgLg cluster complexes has been 

developed beyond elemental analyses and infrared spectra. Further information has 

been gained from Raman and XPS spectra. Characteristic bands can be detected 

in the spectra by these techniques which corroborate the presence of the MogSg 

cluster unit. SEM-EDS has been employed as a means of gaining qualitative 

elemental information. Structural information on the nitrogen-donor ligands has 

shown them to possess the weakest Mo-L bonds as evidenced in relatively low bond 

orders. The results indicate that these complexes should be the best materials for 

further deligation studies to prepare the Chevrel phase compounds. 

Further research is needed in the preparation of single crystals of the 

propylamine adduct, as well as better single crystal structural solutions for the triclinic 

pyridine and tetragonal pyrrolidine complexes. Similarly, useful information could be 
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gained from a crystal structure of the 4-methylpyridine adduct. Pyrrole should be 

explored as a replacement for pyrrolidine, since disorder problems with this ligand 

would be greatly diminished by ring conjugation. Likewise, further efforts should be 

employed in the preparation and characterization of new adducts which might lead 

to even more interesting cluster complexes. Possible materials to study include the 

above mentioned pyrrole (or substituted pyrroles), imidazole, pyrazole, 

dimethylformamide, and bulkier amines like isobutylamine. Further study of mixed 

ligand compounds could prove fruitful in better understanding the exchange process 

which Is occurring. 

Recent research has led to a method for improving the yield of the crystalline 

tetrahydrothiophene complex. The predominant product from the tht reaction, the 

insoluble tht-deficient solid, was stirred with n-propylamine and resulted in nearly 

complete dissolution of the solid and formation of a PrNH2/tht adduct. After stripping 

of the n-propylamine solution, a brown/black solid was obtained. This material was 

further reacted with neat tetrahydrothiophene for 2-3 hours at reflux and resulted in 

a much larger quantity of the crystalline tht complex. 
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PAPER 2. 

DELIGATION OF COORDINATED LIGANDS FROM THE 

MOLECULAR MOgSgLg CLUSTER COMPLEXES 
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INTRODUCTION 

Ternary molybdenum chalcogenldes of the general formula Mĵ MogYg (M=ternary 

metal cation; Y=chalcogenide), known as Chevrel phases, have been extensively 

studied and have been shown to possess interesting physical and chemical 

properties.̂ "® These properties are related to the structures of the compounds which 

consist of MOgYg clusters interlinked to form three-dimensional networks. The 

production of the Chevrel phases has generally involved solid state reactions at high 

temperatures (1000-1SOCC). Recently, though, lower temperature routes using 

polythiomolybdates and metal chlorides as solution precursors have been reported.̂ '̂  

Likewise, a major focus of the McCarley research group has been on the preparation 

of MgSgLg (M = Mo, W) cluster complexes as low temperature precursors to the 

Chevrel phases.®'̂ ® 

Previous attempts at deligation of the MgSgLg cluster complexes have been 

explored for the triethylphosphine adduct of the molybdenum complexes  ̂and the 

pyridine adduct of the tungsten analogue.̂  ̂  For the triethylphosphine adduct, partial 

deligation was found by using phosphine acceptors like Co2(CO)g, Mo{CO)g, or CuCI. 

The use of propylene sulfide to alter the phosphine ligand resulted in the formation 

of coordinated triethylphosphine sulfide. 

For the deligation of the tungsten pyridine adduct, thermal decomposition below 

350°C resulted in partial pyridine removal and heating to 640*0 produced complete 
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deligation, but also disproportionation to tungsten and tungsten disulfide. The 

pyridine adduct was reacted with metallic lead powder in an attempt to form the lead 

Chevrel phase. Heating at temperatures up to 350°C produced partial deligation and 

unreacted lead. An attempt to remove pyridine by forming an aluminum chloride-

pyridine complex also resulted in only partial deligation. Solution reactions with 

trifluoromethanesulfonic acid formed oily residues or products showing triflate anion 

coordination. Likewise, the solution reaction with the boron trifluoride-diethyl ether 

complex produced a solid which showed BFg coordination. 

These results indicated that more weakly ligated adducts should be studied if 

complete deligation is to be reached. Therefore, in this paper, the deligation of a 

variety of the cluster complexes will be explored in an attempt to produce the 

metastable MogSg phase and other Chevrel phase compounds. 
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EXPERIMENTAL 

Materials 

The reagents and products involved in this worl< appear to be air and moisture 

sensitive. Therefore, special precautions were taken to ensure the maintenance of 

a dry, inert atmosphere. All manipulations were performed by the use of an inert 

atmosphere drybox, a high-vacuum manifold, and Schlenk techniques, unless 

otherwise stated. All glassware was thoroughly dried prior to use by its placement 

in an oven at 140°C for at least 4 hours. 

The molecular complexes MogSgL  ̂ were prepared according to procedures 

discussed in Paper 1. Anhydrous ammonia (99.9%) was obtained from Matheson 

Gas Products and condensed onto finely-divided sodium metal before further use. 

Trifluoromethanesulfonic acid (Aldrich Co.) was syringed from a side-arm flask into 

the reaction under a nitrogen purge. The tetrafluoroboric acid-diethyl ether complex 

(85%, Aldrich Co.) was syringed from a Nalgene container under a nitrogen purge. 

All solvents were purified and dried prior to use. Also, the solvents were 

deoxygenated by use of the freeze-thaw process: freeze to liquid nitrogen 

temperature, evacuate the gaseous material, and then thaw. This process was 

repeated three times prior to the distillation of the purified solvent onto 3 or 4 Â 

molecular sieves and storage under vacuum or a nitrogen atmosphere. Diethyl ether 

was purified by refluxing over calcium hydride for at least 4 hours. Methanol was 
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dried by refluxing over sodium methoxide. When used, the solvents were vacuum 

distilled or syringed under a flowing nitrogen gas atmosphere. 

Analytical Procedures 

Molybdenum was determined gravimetrically either as the trioxide (if ternary metal 

cations were not present) or as the 8-hydroxyquinolate. For the trioxide method, 

samples were placed in tared crucibles and decomposed initially with dilute (3M) nitric 

acid. Concentrated nitric acid was then added to ensure complete oxidation and the 

samples evaporated to dryness. After ignition in a muffle furnace at 520°C, the 

resulting MoOg solid was weighed. For the 8-hydroxyquinolate method,̂  ̂ the 

samples were dissolved in basic solutions with the aid of hydrogen peroxide. The 

solutions were neutralized with dilute sulfuric acid to pH = 4-6. EDTA (5%) and acetic 

acid/ammonium acetate buffer solutions were added. The analyte, IVl0O2(ONCgHg)2, 

was precipitated by the addition of 8-hydroxyquinoline solution and filtered through 

tared filters. After washing with hot distilled water, the materials were dried to 

constant weight at 140*0. 

Additional microanalyses for carbon, hydrogen, nitrogen, and sodium were 

obtained from Oneida Research Services.̂ ® The C,H,N analyses were found to be 

lower than expected based on the molybdenum analyses. This problem could arise 

from a loss of ligand prior to the analyses or from incomplete combustion since 

samples known to have excess ligand like pyrrolidine were always found to be ligand-

deficient. Therefore, less confidence was placed in these elemental percentages. 
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Physical Measurements 

Infrared spectroscopy 

Infrared spectra (4000-200 cm*^) were obtained by using an IBM IR/98 Fourier 

Transform Infrared Spectrometer and a Bomem MB-102 Fourier Transform Infrared 

Spectrometer manufactured by Hartmann and Braun. Samples were prepared as 

Nujol mulls and the mulls were pressed between cesium iodide plates. The sample 

chamber was continuously purged with dry, compressed air and reference spectra 

were collected in the empty chamber. 

Raman spectroscopy 

Raman spectra were obtained with the help of Jeanne Wynn in Professor 

Therese Cotton's group. A Spex Triplemate spectrometer with a Princeton Applied 

Research Corp. (PARC) intensified SiPD detector cooled to -40''C was used to record 

the spectra. The excitation source was a Coherent Ar*** 200 series laser at the 

wavelength of 514.5 nm and the scattered radiation was collected in a backscattering 

geometry. The laser power at the sample was approximately 30 mW and the 

integration time was 200 s. The Raman spectra were obtained at room temperature 

from solid samples packed in capillary tubes. 

X-ray photoelectron spectroscopy 

XPS spectra were collected by James Anderegg at room temperature with a 

Physical Electronics Industries 5500 muititechnique surface analysis system. This 
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system was equipped witli a hemispherical analyzer, a toroidal monochromator, and 

multichannel detector which sampled a 2 mm  ̂area. The samples were placed on 

an indium substrate and excited with monochromatic AI K-a radiation (1486.6 eV) at 

the power of 300 W. The binding energies were calibrated with C Is = 284.6 eV. 

Nuclear magnetic resonance spectroscopy 

Proton spectra were collected on the Nicolet NT-300 MHz Instrument. The 

samples were handled in an inert atmosphere solvent drybox and dissolved in 

deuterated benzene just prior to the NMR study. 

X-ray powder diffraction 

An Enraf Nonius Delft FR552 Guinier camera was used to obtain x-ray powder 

diffraction patterns. A General Electric XRD-5 generator with an AEG fine focus tube 

and a copper target were used to generate the x-rays. Air-sensitive samples were 

ground thoroughly and then placed between strips of cellophane tape In the drybox. 

Powdered NBS silicon was added as an internal standard. 

Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEiVI-EDS) 

This technique was employed to obtain qualitative elemental information on the 

sample. A Cambridge 8-200 Scanning Electron Microscope coupled to a Tracor 

Northern Micro Z-il Energy Dispersive Spectrometer with a beryllium window was 

used. The samples were placed onto a metal disk backed with double-stick Scotch 
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tape and then sputter-coated with gold or carbon. The molybdenum L series and 

sulfur K series peaks fell at almost identical energies and thus were not resolvable 

by this technique. 

Thermal analysis (TG/OTA) 

Thermal analysis curves were obtained from a Seiko TG/DTA 300 located in 

Professor Mufit Akinc's group. The samples were loaded into aluminum 

(Tmax=600®C) or platinum pans with brief exposure to the atmosphere. Under flowing 

argon gas (100 cm /̂min), the samples were then heated (10®C/min) to 600°C or 

800*0 depending upon the experiment. 

Mass spectroscopy 

Spectra were collected by Jan Beane of Chemistry Instrument Services on a 

Finnigan 4000 Gas Chromatograph/EI-CI Mass Spectrometer System. The samples 

were heated at a controlled rate (30-50°C/min) and the spectra were collected at 

several intervals during the experiments. Electron ionization of 70 eV was used. 

Synthetic Procedures 

This study focused on the deligation of nitrogen-donor cluster complexes, 

especially the propylamine, pyridine-deficient and piperidine adducts. Some 

additional work has involved the tetrahydrothiophene adducts since only the deligation 
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of the triethylphosphine adduct was previously explored for the MogSg cluster 

compounds.̂  Likewise, only the pyridine adduct deligation has been studied for the 

tungsten analogues.̂  ̂  These previous studies indicated that the deligation of the 

complexes was very difficult and complete removal of the ligands was not achieved. 

Routes designed to remove the ligands were explored by both solid state reactions 

and those in solution. 

An initial step in studying the deligation of the cluster complexes was to explore 

the thermolysis of these materials by TG/DTA. 

Thermal deligation 

Similar reaction conditions were employed for all thermal decomposition reactions. 

In a typical preparation, the sample was placed in a Pyrex tube equipped with a 

standard ball-joint and adapter. The tube was then evacuated and heated to the 

desired temperature under dynamic vacuum. The following adducts were studied by 

this method: pyridine, 4-methylpyridine, propylamine, pyrrolidine, piperidine, and 

tetrahydrothiophene. The temperatures were varied from 100-500*0 and the reaction 

was usually held at the desired temperature for a period of 1 -2 days. Infrared spectra 

were always collected. Depending upon the product, x-ray powder diffraction data, 

elemental analyses, mass spectra, and other spectral data (Raman, XPS, and NMR) 

were also obtained. 
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Reactions with ternary metals 

Reactions of the pyridine-deficient compound were explored by heating in the 

presence of ternary metal powders like tin and lead. The general reaction sequence 

involved heating the mixture at 500-700°C for 1-4 days under dynamic vacuum to 

remove the organic llgands and then further heating at 700-900°C for 4-7 days in a 

sealed tube. The reaction of the pyridine-deficient compound with an excess of tin 

at 700°C for 1 day resulted in an amorphous black powder. XPS data were collected 

on this material. Further heating to 900°C produced a black/grey powder in which the 

x-ray powder pattern indicated the presence of SnMogSg, Sn, and M0S2. Similar 

reactions were repeated with stoichiometric ratios of reactants and also resulted in 

a mixture of the desired Chevrei phase compound and M0S2. 

Alternatively, the pyridine-deficient compound was first heated to 500°C for 2 

days under dynamic vacuum before further reaction with the ternary metal. The 

resulting black powder was amorphous and exhibited a featureless infrared spectrum. 

Anal. Calc. for NaMOgSg 5: Mo, 66.67%. Found: Mo, 61.82%. This material was then 

further reacted with lead powder at 700-900°C for 5-7 days. The x-ray powder 

pattern of the resulting product indicated the presence of the lead Chevrei phase 

along with lead and MoSg impurities. 

Reactions with ammonia gas 

In an attempt to exchange ammonia for propylamine in the cluster complex, the 

idea of using flowing ammonia gas to aid in cluster deligation was pursued. The 
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initial reaction Involved placing 0.3 g of tiie propylamine adduct on a fritted disk in a 

Pyrex gas dispersion tube and heating to 150°C for 4 hours under flowing ammonia. 

The resulting black product was insoluble in neat n-propylamine. Infrared and Raman 

spectra were obtained. The reaction was repeated at 200*C and resulted in a similar 

infrared spectrum. Also, XPS data were obtained for this product. 

Reactions with ammonia were also explored with the pyrrolidine and piperidine 

adducts. The pyrrolidine sample was heated to 250°C for 4 hours in flowing 

ammonia. Infrared and Raman spectra were obtained for the black, amorphous 

powder. The piperidine adduct was first heated to 200°C for 5 hours under flowing 

ammonia and an infrared spectrum was collected. A second piperidine sample was 

then heated to 300*0 for 5 hours in flowing NHg and infrared and Raman spectra 

were collected. Anal. Found on the piperidine sample heated to 300°C: Mo, 53.06%. 

Reaction of MogSg(PrNH2)y with trifluoromethanesulfonic acid 

Reactions of the cluster complex with this strong acid were explored in an attempt 

to protonate the propylamine ligand and thus make it a better leaving group. A 

general reaction involved placing 0.5 g of the propylamine adduct into a 100 mL 

reaction flask. Methanol (25 mL) was distilled onto the solid, followed by the addition 

via syringe of CF3SO3H (0.26 mL, 6 equiv.), and the mixture was refluxed for 1 day. 

After filtration and drying under dynamic vacuum, a black solid was obtained. 

Infrared spectra were collected on these products. 
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Reaction of M0gSg(PrNH2)y with tetrafluoroboric acid-diethyl ether complex 

Similar reactions were explored with HBF  ̂EtgO in both methanol and diethyl 

ether solutions. Generally, 0.2-0.3 g of the propylamine adduct was placed in a 100 

mL reaction flask with 25-30 mL of the organic solvent and then 6 equivalents of the 

acid were added (0.15-0.3 mL). The mixtures were then refluxed for 1 day and after 

filtering and drying under dynamic vacuum, black solids were obtained. Infrared 

spectra were collected for the two materials. Anal. Found on product in methanol 

solution: Mo, 54.72%; C, 3.92%; H, 1.41%. 



www.manaraa.com

153 

RESULTS AND DISCUSSION 

Thermal Deligation 

The method of thermal deligation was the first route explored for the cluster 

complexes. Ideally, the molybdenum-ligand bond would be weaker than the 

corresponding cluster molybdenum-sulfur bonds and, upon cleavage, the ligand would 

be displaced and result in intercluster molybdenum-sulfur linkages and formation of 

the binary Chevrel phase MogSg. This process is indicated by reaction 1 : 

MogSgLg —> MogSg + 6L (1) 

However, ligand fragmentation was also a possible outcome, which would result in 

the random blocking of intercluster linkages and produce a disordered material. Also, 

as a precautionary measure, deligation temperatures were limited to those below 

about 450-500*0 because the binary MogSg phase has been shown to undergo 

disproportionation above 500°C to the more thermodynamically stable products of 

molybdenum and molybdenum disulfide.̂  

Propylamine 

The first step in understanding the thermal deligation process was to study 

pyrolysis via TG/DTA. The initial cluster complex chosen for study was the 

propylamine adduct and the resulting TG/DTA cun/e is shown in Figure 1. As 
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Figure 1. TG/DTA curve for the propylamine adduct - MogSg(PrNH2) 
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observed in this figure, weight loss occurs quite quickly (Tçn3a,~50®C) and shows a 

steady weight loss to almost 400°C before levelling off. The observed weight loss of 

21.3% corresponds to the removal of about 4 propylamine ligands and this black 

product exhibits a featureless infrared spectrum. 

Based on the TG/DTA findings, deligation was explored under dynamic vacuum. 

A lower temperature of 250*C was initially chosen and resulted in the formation of a 

shiny, grey-black amorphous solid. The far-infrared spectrum of this product is shown 

in Figure 2a and exhibits a very weak and broad peak centered about 386 cm'̂ . 

Also, the mid-IR region is completely devoid of propylamine bands. The Mo analyses 

on this material (62.13% Mo) were lower than that calculated for MogSg (69.18%). 

The XPS spectrum corroborated that this material contained the cluster unit and that 

MoSg was not present. 

Further heating of the propylamine adduct to 350°C again resulted in the 

formation of a shiny, yet amorphous, grey-black solid. The mid/far-infrared spectrum 

(Figure 2b) exhibits only several weak bands in the range of 406-347 cm" .̂ The 

spectmm indicates that the weak, broad Mo-S stretching mode is being lost amongst 

the bands caused by trace amounts of water in the IR purge gas. Molybdenum 

analyses (67.99% Mo) on this product indicated that some organic residue must be 

present. This result can be understood as probably arising from fragmentation of the 

propylamine ligand, since, during pyrolysis, a noticeable pressure increase at about 

300*0 was observed. This increase in pressure could only be due to volatile gases 

like methane or hydrogen which would not condense in the liquid nitrogen trap. 
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Figure 2. Infrared spectra (Nujol) of the propylamine adduct deligation products 
at 250®C (a) and at 350*0 (b) by heating under dynamic vacuum 
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The Raman spectra for the initial propylamine cluster complex and the product 

of deligatlon at 350°C are shown in Figure 3. The presence of the broad band 

centered at 448 cm'̂  in these spectra indicates that the MogSg cluster unit has been 

retained after thermolysis. 

Pyridine compounds 

Thermolysis of the pyrldine-deficlent compound, formulated as Na2ylVl0gSg^y(py)x, 

was also explored. Since this compound was nearly deiigated already, it was 

reasoned that further heating might readily lead to the ternary Chevrel phase -

Na^çMOgSg (x=1-3). The TG/DTA curve is shown in Figure 4. The material which 

was examined by TG/DTA contained more pyridine since it was not reactive upon the 

brief air contact necessary In loading samples for thermal analysis; however, other 

samples often exhibited smoking or flaming of the material prior to the TG/DTA 

experiment. This curve shows an uneven weight loss regime which indicates a 

complex thermolysis process. Unlike the propylamine adduct, heating did not 

produce a levelling of the weight loss and probably indicates the start of cluster 

degradation. The sodium Chevrel phase is metastable since it can only be prepared 

by the electrochemical insertion of sodium into the binary phase MogSg,̂ '̂  ̂and thus 

should show disproportionation to Mo and M0S2 at these temperatures (800°C). 

Attempts at thermal deligation under dynamic vacuum at 250*C and 500*0 were 

explored for the pyrldine-deficlent compound. Deligation at 250*^0 produced a black 

powder which exhibited only a broad Mo-S band centered at 393 cm'̂  in the far-IR 
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Figure 3. Raman spectra of M0gSg(PrNH2)y (a) and the deligation product (b) 
from heating at 350°C under dynamic vacuum. The peaks are 
centered at about 448 cm'' 
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region. An XPS study on this material gave further evidence for retention of the 

MogSg cluster unit, as shown in Table 1. Heating of the pyridine-deficient material 

to 500*0 resulted in the formation of an amorphous black powder which possessed 

a featureless infrared spectrum. The Raman spectrum of this material (Figure 5) 

shows a broad peak centered at about 445 cm'̂  which is indicative of the MogSg 

unit. Molybdenum analyses (61.82% Mo) were lower than expected for the sodium 

Chevrel phases (Gale, for NagMogSg: Mo, 63.88%) or for the ternary sodium 

molybdenum sulfides (Gale, for NagMogSg: - Mo, 63.25%) which might indicate 

incomplete deligation. Further reaction of this material with lead powder will be found 

in the discussion of the reactions with ternary metals. 

Similar TG/DTA curves are noted for the pyridine and 4-methylpyridine adducts 

(Figure 6). Both curves indicate complex deligation processes; however, the TG/DTA 

spectrum for the pyridine adduct shows a cessation of weight loss above 640°G, 

while the 4-methylpyridine curve exhibits weight loss over the entire region. The 

pyridine weight loss of 32.5% corresponds to the removal of 5.5 pyridine ligands and 

the 4-Mepy weight loss of 29.0% indicates the loss of about four 4-methylpyridine 

ligands. Each of these materials contains sodium, as discussed in Paper 1, which 

also leads to the potential of forming the sodium Ghevrel phases. The resulting black 

products were not analyzed since, at these pyrolysis temperatures, M0S2 should be 

formed. 
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Table 1. XPS data for deligation products® 

Na2yMogSg^y(py)x Naĵ MogSĵ  (W)x 
heated to 250°C reacted with Sn 

by heating to 700°C 

SnMOgSgb 

Mo 3dgg 227.5 227.4 227.4 228.1 

Mo 3dgy2 230.6 230.6 230.6 231.4 

S 2s 225.4 225.3 225.3 -

S 2pag 161.1 br 161.0 br 161.4 161.7 

S2pt/2 - - 162.6 sh -

Values adjusted to C Is = 284.6 eV; br = broad, sh = shoulder 
 ̂data from reference 6 
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Figure 5. Raman spectrum for the product from the deiigation of the pyridine-deficient compound at 500°C 
under dynamic vacuum 
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Tetrahydrothiophene 

TG/DTA curves for the crystalline adduct and ligand-deficient complex are shown 

in Figure 7. The crystalline adduct is quite stable up to about 160*0 before 

undergoing a sharp weight loss of 18.6% (approx. 3 tht ligands). A stability range of 

about 70°C is present before the material undergoes a further two-step weight loss. 

The weight loss levels off at about 500°C and then indicates the start of a weight gain 

as the temperature nears 600*0. This weight gain can be understood as arising from 

the uptake of oxygen since the whitish TG/DTA product is MoOg. This result 

obviously indicates that the system contains oxygen contaminants and leads to 

oxidation of the cluster unit. The total weight loss of 39.0% corresponds to complete 

removal of the 6 tetrahydrothiophene ligands. 

The TG/DTA curve for the ligand-deficient tetrahydrothiophene complex exhibits 

ligand loss from the onset of the experiment to about 350°0 where the weight loss 

levels off. The total weight loss of 19.9% corresponds to removal of almost all of the 

tht ligands (about 2.5 tht) and the resulting infrared spectrum shows only the 

presence of MoSg peaks at 384 and 469 cm'̂ . The observed decomposition of the 

deligated MogSs cluster units at 600*0 would be expected since the metastable 

MogSg is known to disproportionate at around 450-500°0. 

Thermal deligation under vacuum was explored at 250*0 for both the crystalline 

adduct and the ligand-deficient complexes. The resulting black products exhibited a 

very similar "metallic" appearance; however, powder x-ray diffraction showed both to 

be amorphous. The far-infrared spectra, shown in Figure 8, possibly exhibit weak, 
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TG/DTA curves for the crystalline MogSg(tht)g (a) and the ligand-
deficient MogSg(tht)y (b) complexes 
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Figure 8. Infrared spectra (Nujol) for the deligation of the tetrahydrothiophene 
adducts at 250®C under dynamic vacuum. Products from reactions 
of the crystalline (a) and llgand-deflclent complexes (b) are shown. 
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broad Mo-S bands about 400 cm'\ The mid-IR region was featureless. Figure 9 

shows the Raman spectra for these deligation products. These spectra indicate the 

presence of the MOgSg cluster unit as identified by the broad peak centered at about 

445 cm'̂ . The tetrahydrothiophene-deficient compound was also heated to 350°C 

under dynamic vacuum and resulted in the formation of an amorphous, black powder. 

The infrared spectrum was featureless, however, the Raman spectrum was virtually 

identical to that observed in Figure 9b. 

In order to better understand the deligation process for the tetrahydrothiophene 

adducts, mass spectroscopy was employed. Studying the mass spectra of the 

products obtained upon heating would show whether intact tetrahydrothiophene was 

lost or if some fragmentation process was occurring which left coordinated sulfide or 

organo-sulfides bound to the molybdenum. Similar results were observed for both 

materials and showed that tetrahydrothiophene deligated intact, as indicated by the 

strong presence of the tht parent peak. Figure 10 shows the mass spectrum 

obsen/ed (with very slight variations that depended upon the temperature) for the 

crystalline tht adduct and a plot of the relative ion current versus scan number. 

Temperatures along the curve can be calculated and the plot can be understood as 

a thermal analysis curve showing the largest loss at about 240°C. The observed 

mass spectra all exhibited the same peaks for tht and fragments of this parent: 88 

amu for C^HgS (tht), 60 for CgH^S  ̂(largest peak), 54-56 for butene and butadiene, 

and 46 for CH2S'''. As the temperature increased, less tht was observed (80 -f 60 

relative %), more HDS products (54-56 amu) were found; yet, very little HgS was detected. 
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Figure 9. Raman spectra for the deligation of the tetrahydrothiophene adducts 
at 250'»C under dynamic vacuum. The products from reactions of 
the crystalline (a) and the ligand-deficient complexes (b) are shown. 
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Similar mass spectra vs. temperature curves were observed for the ligand-

deficient complex. A difference was noted in that there was very little change in 

relative intensities of the various peaks at the different temperatures of the measured 

spectra. Also, no larger fragments (M/Z100-850) were detected in either experiment, 

which indicated that the MogSg cluster unit remained intact up to about SOO'̂ C. 

Pyrrolidine 

The TG/DTA curve for the pyrrolidine adduct is shown in Figure 11. The curve 

exhibits initial stability from 25-100°C before undergoing a sharper weight loss over 

the region 120-300*0 and then a steady loss through the rest of the experiment. The 

total weight loss of 23.6% corresponds to 4.4 pyrrolidine lost. The resulting product 

was an amorphous blacl< powder. 

Thermal deligation was explored in vacuo at 200, 350, and 450*0. Heating to 

200*0 produced an amorphous black powder with probable pyrrolidine peaks in the 

mid-infrared region and split peaks at 395 and 380 in the far-IR region. A similar 

black, amorphous powder was obtained by heating to 350*0. The far-infrared 

spectrum of this solid (Figure 12a) showed a broad Mo-S band centered at 395 cm* .̂ 

Further heating of the same material to 450*0 also resulted in a black, amorphous 

powder with two broad bands in the far-infrared spectrum at 486 and 402 cm"  ̂

(Figure 12b). Molybdenum analyses of 63.91% Mo were found for the pyrrolidine 

adduct heated at 450*0 which again is lower than the value calculated for MogSg 

(69.18% Mo). This result indicates that some organic residue remains. 
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deligatlon at 350°C (a) and at (b) under dynamic vacuum 
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Piperidine 

TG/DTA curves are shown for the crystalline adduct and the red powder resulting 

from the reaction of larger quantities of the propylamine adduct with neat piperidine 

(Figure 13). Both curves show almost immediate weight loss as would be expected 

considering that about 7 "free" piperidine per cluster reside in the lattice. The 

crystalline adduct exhibits a sharp loss over the region 30-100°C (25.7% - about 6 

pip). A slower weight loss of 6.7% (approx. 1.5 pip) is found from 100-160°C and 

then continuous weight loss is seen over the rest of the region. The total weight loss 

of 56.5% corresponds to all 13 piperidine being removed. The resulting product from 

the TG/DTA experiment was a brown/black powder. 

The TG/DTA of the red solid shows a rapid weight loss of 27.3% (about 6 

piperidine) from 30-100®C before slowly losing more weight over the rest of the 

region. The total weight loss of 40.3% only corresponded to the removal of 9 

piperidine ligands and probably indicated that some piperidine must still be present 

in the sample. The resulting product was a grey/black powder. Earlier TG/DTA 

curves exhibited a brief plateau region from 120-140°C. 

Based on the large initial loss of piperidine, attempts were made to form this 

intemiediate by heating of the adduct at 100*0 under dynamic vacuum. The product 

of this reaction was an amorphous brown powder whose infrared spectrum showed 

the presence of coordinated piperidine and a shifting of the Mo-S peak from 382 to 

387 cm'̂  (Figure 14a). The solid was found to be soluble in toluene; therefore, a 

NMR spectrum was obtained in deuterated benzene. The material was not as soluble 
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Figure 14. Infrared spectra (Nujol) for the deligation of the piperidine adduct 
at 100°C (a) and at 300°C (b) by heating under dynamic vacuum 
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as before the heating, but, the NMR spectrum showed bands identifiable as both 

coordinated and free piperidine (as discussed in Paper 1). The bands for free 

piperidine were much weaker than before; however, their presence indicated that the 

heating of this material to 100°C for 1 day under dynamic vacuum caused only partial 

removal of the "free" piperidine trapped in the lattice. This heated material dissolved 

in neat piperidine and resulted in the formation of a pinkish-red solution from which 

small crystals of the adduct could be grown. 

Heating of the piperidine adduct to 300*0 was also explored. During heating at 

300°C, a pressure loss due to the formation of gaseous products was observed. The 

thermolysis product was found to be an amorphous black powder whose infrared 

spectrum is shown in Figure 14b. The infrared spectrum possibly indicates the 

presence of the MOgSg cluster unit with weak, split Mo-S bands at 389 and 405 cm'̂ . 

Attempts to dissolve this material in either neat piperidine or benzene (for NMR study) 

showed that it was insoluble. A Raman spectrum was obtained for this product which 

also confirmed that the MogSg unit remained (Figure 15). 

Reactions with Ternary IVIetais 

The pyridine-deficient compound was reacted with tin and iron powder in an 

attempt to prepare the ternary Chevrel phases. The reactions proceeded initially 

under dynamic vacuum at 700°C to remove the ligated pyridine and resulted in 

amorphous black or black/grey powders. The XPS data for the reaction of excess 
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Figure 15. Raman spectrum for the product from the deligation of the piperidine adduct at 300*C 
under dynamic vacuum 
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tin powder with the pyrldine-deficient compound is shown in Table 1. The observed 

molybdenum and sulfur binding energies indicate that the MogSg unit is retained - no 

disproportionation to M0S2 and molybdenum metal. However, the binding energies 

of this reaction product are shifted from those observed for the tin Chevrel phase and 

probably indicate this material is some intermediate phase. This conclusion is further 

supported by the amorphous nature of the product. 

The observation that these reactions led to amorphous products prompted further 

heating of the solids to 900°C in a sealed tube. The powder x-ray diffraction patterns 

of the resulting products showed lines indicative of the desired ternary Chevrel 

phases, as well as the MoSg disproportionation product. 

An alternative method was to deligate the pyrldine-deficient compound first by 

heating to 500°C under dynamic vacuum and then reacting this material with the 

ternary metal powders. The reactions which were explored involved heating with lead 

powder and resulted in the formation of PbMogSg, MoSg, and Pb phases as identified 

by the powder x-ray diffraction patterns. 

Reactions with Ammonia Gas 

The dellgation of the propylamine adduct was explored In the presence of flowing 

ammonia gas and resulted in a black, amorphous powder. The infrared and Raman 

spectra for the dellgation reaction at 150*0 are shown in Figure 16. The spectra 

indicate that the MogSg cluster unit is retained as evidenced by the Mo-S band at 448 

cm"^ In the Raman spectrum and the split Mo-S bands at 381 and 367 cm"^ in the 
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Figure 16. Infrared (a) and Raman (b) spectra for the product from the 
deligation of the propylamine adduct at 150*0 in flowing ammonia 
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infrared spectrum. The bands in the mid-IR region are due exclusively to the 

presence of contaminating stopcock grease; no peaks identifiable as propylamine 

bands are found. Likewise, no bands for coordinated NHg were detected. Similar 

results were obtained for the reaction at 200*0. The XPS spectrum (Figure 17) 

shows binding energy values of 227.6 (Mo Sdg/g), 230.7 (Mo Sdg/g), 225.3 (S 2s), 

160.8 (8 2P3/2), and 161.8 eV (8 2p^/2). The Mo 3d5/2 value is close to that found for 

MogSg of 227.5 eV (all data corrected for CIs).^® The spectrum also exhibits higher 

Mo binding energy peaks indicative of surface oxide contamination. 

A comparison between heating under dynamic vacuum and in flowing ammonia 

at 150*C for 4 hours was made. As discussed previously, the reaction in flowing 

ammonia resulted in an infrared spectrum with no detectable propylamine bands. 

However, the infrared spectrum of the sample heated at 150°C under dynamic 

vacuum showed distinctive propylamine bands. These obsen/ations further indicated 

that heating under flowing ammonia does aid in the deligation of the coordinated 

propylamine llgands. 

Deligation under flowing ammonia gas was also explored for the pyrrolidine and 

piperidine adducts. Heating of the pyrrolidine adduct to 250°C for 4 hours resulted 

in the formation of a black, amorphous powder. The infrared spectrum (shown in 

Figure 18a) shows only bands attributable to stopcock grease in the mid-IR region 

and a distinct Mo-S band at 386 cm'̂ . Heating of the piperidine adduct to 200°C in 

ammonia resulted in incomplete deligation, as indicated by the presence of 

coordinated piperidine bands in the mid-infrared spectrum. However, heating to 
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Figure 17. Uncorrected XPS spectrum showing Mo 3d and S 2s bands for the product from the deligation of 
the propylamine adduct at 150°C in flowing ammonia. Oxide contamination is evidenced by the 
presence of the bands at higher binding energies. 
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300°C produced an amorphous black solid with a featureless mid-IR and a Mo-S 

band at 388 cm"^ in the far-infrared region, as shown in Figure 18b. Raman spectra 

(Figure 19) for the deligation of the pyrrolidine and piperidine adducts in flowing 

ammonia show the presence of a broad peak centered at about 445 cm'̂  which is 

indicative of the MogSg cluster unit. The molybdenum analysis on the piperidine 

adduct heated to 300*0, 58.06%, indicated that some type of organic or nitride 

residue remained in this material. 

Solution Deligation Studies 

Reactions with trifluoromethanesulfonic acid 

The propylamine adduct was reacted with trifluoromethanesulfonic acid in 

methanol in an attempt to protonate the amine and thus make it a better leaving 

group. Reactions resulted in the production of an amorphous black solid whose far 

infrared spectrum is shown in Figure 20a. The mid-IR region is nearly featureless 

except for the band observed at 631 cm'\ The far-IR region shows the same band 

at 631 cm"\ as well as, a broad Mo-S stretching mode at 400 cm'\ The 

coordination of the triflate anion (CFgSOg") was previously observed in the deligation 

attempts with the tungsten cluster complex WgSg(py)g, yet, the presence of triflate 

anion cannot be confirmed by this spectrum. Further reaction of this material with 

pyridine in an attempt to prepare the pyridine-ligated material produced a spectrum 

that showed both coordinated pyridine and triflate. Therefore, work was discontinued 

in attempting to deprotonate the cluster with trifluoromethanesulfonic acid. 
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Figure 19. Raman spectra for the deligation of the pyrrolidine adduct at 250°C 
(a) and the piperidine adduct at 300*0 (b) by heating in the presence 
of flowing ammonia 
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Figure 20. Infrared spectra (Nujol) for the solution deligation of the propylamine 
adduct with trifluoromethanesulfbnic acid (a) and with tetrafluoroboric 
acid-diethyi ether complex (b) in methanol 
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Reactions with tetrafiuoroboric acid-diethyl ether complex 

Similar deprotonation reactions of the propylamine adduct were attempted with 

HBF^ Et20 In both diethyl ether and methanol. The reactions in diethyl ether 

resulted in products that showed distinct bands for BFg or BF^~. The reactions in 

methanol resulted in black solids whose infrared spectrum is shown in Figure 20b. 

This spectrum exhibits two distinct bands at 1027 and 976 cm~^ which probably result 

from coordinated methanol. An infrared spectrum of the methanol filtrate showed 

bands attributable to PrNHg^BF '̂ which indicated the acid was succeeding in 

deprotonating the ligand. Elemental analyses on the black solid indicated the 

presence of carbon fragments (3.92% C, 1.41% H). The hydrogen to carbon ratio of 

4.3:1 is reasonable for methanol; however, comparison of the C:Mog ratio of 3.4:1 to 

the obsen/ed elemental percentages suggests possible coordination of fluoroborate. 

Currently, though, there is no evidence for any remaining BFg or BF '̂. 
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CONCLUSIONS 

This paper describes the deligation of coordinated ligands from the molecular 

MOgSgl-g cluster complexes. A variety of cluster complexes were studied under the 

conditions of thermal deligation, reactions with ternary metals, reactions in flowing 

ammonia gas, and solution reactions. The emphasis was on the deligation of the 

nitrogen-donor complexes since crystallographic structure determinations have 

indicated that these ligands show the weakest bonding to the MOgSg cluster. 

Thermal analysis by TG/DTA provided initial temperature ranges where deligation 

was occurring; however, the upper heating limit was fixed at about 450-500°C since 

MogSg disproportionates to Mo and MoSg at these temperatures. Direct heating 

under dynamic vacuum for all the complexes resulted in incomplete deligation, as 

evidenced by low molybdenum analyses. It was reasoned that ligand fragmentation 

had occurred at temperatures above 300°C, since a noticeable increase in pressure 

was observed at these temperatures. This pressure increase must result from the 

production of volatile gases like methane or hydrogen which would not have 

condensed in the liquid nitrogen trap. The pyridine-deficient compound could be 

heated to at least 500°C without cluster degradation as evidenced by the Raman 

spectrum. This extra stabilization must result from the presence of the ternary 

sodium cations. 

Reactions of the pyridine-deficient compound with the ternary metals tin and lead 

were attempted to prepare the corresponding Chevrel phases. An amorphous solid 
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resulted from the heating with tin to yoo'c. The XPS spectrum Indicated that the 

material was Chevrei phase-like, but not SnMogSg. Also, the spectrum showed that 

this product had not disproportlonated to form M0S2. The tin Chevrei phase and 

M0S2 could by produced by further heating to 900°C. Similar reactions were 

evidenced with lead metal and produced the lead Chevrei phase, lead, and IVI0S2. 

These reactions are the first which show that the molecular MogSg cluster complexes 

can be reacted to form the desired Chevrei phases. 

Thermolysis reactions In the presence of flowing ammonia gas have resulted in 

what appears to be complete deligation of the propylamine adduct at much lower 

temperatures than are observed by direct heating under dynamic vacuum. The 

Infrared spectrum for heating at 150°C Indicated propylamine deligation in the 

ammonia reaction, while distinct propylamine bands were observed for the sample 

heated in vacuo. Similar reactions at higher temperatures for the pyrrolidine and 

piperidine adducts have not resulted In complete deligation. 

Attempts at deligation were explored by solution reactions with strong acids in an 

attempt to protonate the propylamine llgand and thus make It a better leaving group. 

Reactions in trifluoromethanesuifonic acid led to removal of the llgand; however, 

coordination of the triflate anion was observed. Reactions with the tetrafluoroboric 

acid/diethyl ether complex In diethyl ether led to coordination of BFg or BF4'. Further 

reactions in methanol removed the propylamine ligand and the infrared spectra 

showed only methanol coordination, yet the analyses do not clearly Indicate complete 

deligation. 
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Areas of further study in the deligation of the MogSgLg cluster complexes include 

better characterization of the reaction products through further elemental analyses 

and techniques like EXAFS, XPS and Raman spectroscopy. Further examination is 

needed on the reactions of the cluster complexes with ammonia gas and in the 

methanol solution with tetrafluoroboric acid/diethyl ether complex. Initial study has 

indicated that these reactions may lead to nearly complete deligation, however, 

further proof is necessary. 

Further study of the higher temperature heating with ternary metals should be 

explored, especially reactions in a reducing hydrogen atmosphere. Interesting metals 

to study include cobalt, nickel, copper, and zinc. Likewise, other types of intercalation 

reactions should be studied, such as reactions with RgZn, R^(Pb,Sn), n-BuLi, Zn(Hg), 

Na(Hg), CaHg, and metal halides like MXg (M=Pb,Cu, Sn, Zn) and LiX. 
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PAPER 3. 

NOVEL PREPARATIVE ROUTES TO TERNARY MOLYBDENUM SULFIDES 

VIA SODIUM MOLYBDENUM SULFIDE 
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INTRODUCTION 

Ternary molybdenum chalcogenides of the general formula M^^MOgYg (M=ternary 

metal cation; Y=chalcogenide), known as Chevrel phases, have been extensively 

studied and have been shown to possess interesting physical and chemical 

properties.^ The most recent focus has been on the catalytic properties of the 

Chevrel phases, especially the development of these compounds as heterogeneous 

catalysts for hydrodesulfurization (HDS).®"® 

The importance of this catalytic process is evidenced by the fact that over 60 

million barrels of oil per day undergo HDS before further processing.^° The typical 

HDS catalyst is produced from molybdenum oxides with a promoter metal such as 

cobalt supported on high surface area alumina (y-AlgOg).^^ Recently, a number of 

Chevrel phase compounds have been shown to possess higher HDS activities than 

the commonly used Co-Mo-S catalysts. The Chevrel phases were also found to be 

more selective catalysts since these materials exhibited less 1-butene 

hydrogénation.®*® 

The largest drawback concerning these Chevrel phase catalysts is their low 

surface area (0.1-1.5 m^/g) relative to the supported Co-Mo-S catalysts on y-AlgOg 

(100 m^/g). It is commonly observed in these types of catalytic processes that the 

activity increases with surface area; therefore, there is a need for the development 

of supported Chevrel phases. 
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In order to produce supported Chevrel phase compounds, a variety of methods 

have been attempted Including evaporation,^^ sputtering,^^ and chemical vapor 

transport.^ ̂  Recently, though, lower temperature routes using polythiomolybdates 

and metal chlorides as solution precursors have been reported.^ Also, the first 

example of an alumina-supported Chevrel phase compound has been published.^ ^ 

The discovery that sodium was present in the pyridine-deficient cluster 

compounds prompted the exploration of similar reactions without the addition of 

pyridine to the reaction mixture. The resulting ternary sodium molybdenum sulfides 

should more closely resemble the desired Chevrel phase compounds and open 

another avenue for preparing a variety of different materials via cation exchange 

reactions. The focus of this paper is on a new preparative route to the ternary 

Chevrel-like phases via sodium molybdenum sulfide. Characterization of these new 

phases and the preliminary studies as to their HDS catalytic activity will be discussed. 



www.manaraa.com

195 

EXPERIMENTAL 

Materials 

The reagents and products involved in this work appear to be air and moisture 

sensitive. Therefore, special precautions were taken to ensure the maintenance of 

a dry, inert atmosphere. All manipulations were performed by the use of an inert 

atmosphere drybox, a high-vacuum manifold, and Schlenk techniques, unless 

otherwise stated. All glassware was thoroughly dried prior to use by the placement 

in an oven at 140*0 for at least 4 hours. 

M0gCli2 was prepared by the high temperature comproportionation method 

described by Koknat et al.^^ Sodium hydrosulfide (NaSH) was prepared by the 

method described by Brauer.^^ In this method, hydrogen sulfide gas was bubbled 

through a solution of sodium ethoxide In ethanol and the desired product was 

precipitated by the addition of diethyl ether. Sodium butoxide (NaOBu) was prepared 

by the reaction of n-butanol with sodium metal, and used as the solid. The metal 

dichlorides of cobalt, tin, and lead were dehydrated by heating under dynamic 

vacuum and the resulting solids were stored in the drybox. Holmium trichloride was 

prepared at the Ames Lab Rare-Earth Center by the heating of holmium oxide with 

an excess of ammonium chloride to 275°C. The excess ammonium chloride was 

sublimed at 350°C and the HoClg was stored in the drybox. 
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All solvents were purified and dried prior to use. Also, the solvents were 

deoxygenated by use of the freeze-thaw process: freeze to liquid nitrogen 

temperatures, evacuate the gaseous material, and then thaw. This process was 

repeated three times prior to the distillation of the purified solvent onto 3 or 4 Â 

molecular sieves and storage under vacuum or a nitrogen atmosphere. N-

propylamine was purified by refluxing over calcium hydride for at least 4 hours. 

Without heating, 1 -butanol was stirred with sodium metal. Methanol was dried by 

refluxing over sodium methoxide. N,N-dimethylformamide (dmf) was purified by 

refluxing with barium oxide. When used, the solvents were vacuum distilled or 

syringed under a flowing nitrogen gas atmosphere. 

Analytical Procedures 

The presence of the transition metal cations interfered with the normal 

molybdenum analysis procedure, therefore, it became necessary to separate the 

metal cations prior to further analysis. The separation of cobalt^^ was relatively easy 

and was incorporated into the procedure discussed below. Cobalt was determined 

as the oxide, Co20g, while molybdenum was determined as the 8-hydroxyquinolate.^^ 

In this adapted procedure, the samples were dissolved in basic solutions with the aid 

of hydrogen peroxide. The cobalt oxide precipitated while the molybdenum remained 

in solution. The cobalt oxide was collected by filtration using tared Gooch crucibles 

and then ignited at 520*C in a muffle furnace to constant weight. The solutions 

containing molybdenum were then neutralized with dilute sulfuric acid to pH = 4-6. 
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EDTA (5%) and acetic acid/ammonium acetate buffer solutions were added. The 

analyte, M0O2(ONCgHg)2. was precipitated by the addition of the 8-hydroxyquinoline 

solution and filtered through tared filters. After washing with hot distilled water, the 

materials were dried to constant weight at 140°C. A similar procedure was employed 

for the analysis of holmium. Additional microanalyses for sodium and cobalt were 

obtained from Oneida Research Services.^^ 

Chlorine was determined by the potentiometric titration of neutralized solutions 

with a standardized silver nitrate solution. A silver/silver chloride electrode was used 

as the working electrode and a silver electrode as the reference. The endpoint was 

determined by using the second derivative method. 

Physical Measurements 

Infrared spectroscopy 

Infrared spectra (4000-200 cm"^) were obtained by using an IBM IR/98 Fourier 

Transform Infrared Spectrometer and a Bomem MB-102 Fourier Transform Infrared 

Spectrometer manufactured by Hartmann and Braun. Samples were prepared as 

Nujol mulls and the mulls were pressed between cesium iodide plates. The sample 

chamber was continuously purged with dry, compressed air and reference spectra 

were collected in the empty chamber. 

Raman spectroscopy 

Raman spectra were obtained with the help of Jeanne Wynn in Professor 
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Therese Cotton's group. A Spex Triplemate spectrometer with a Princeton Applied 

Research Corp. (PARC) intensified SiPD detector cooled to -40°C was used to record 

the spectra. The excitation source was a Coherent Ar"*" 200 series laser at the 

wavelength of 514.5 nm and the scattered radiation was collected in a backscattering 

geometry. The laser power at the sample was approximately 30 mW and the 

integration time was 200 s. The Raman spectra were obtained at room temperature 

from solid samples packed in capillary tubes. 

X-ray photoelectron spectroscopy 

XPS spectra were collected by Jim Anderegg at room temperature with a 

Physical Electronics Industries 5500 multitechnique surface analysis system. This 

system was equipped with a hemispherical analyzer, a toroidal monochromator, and 

multichannel detector which sampled a 2 mm^ area. The samples were placed on 

an indium substrate and excited with monochromatic AI K-a radiation (1486.6 eV) at 

the power of 300 W. The binding energies were calibrated with C Is = 284.6 eV, 

X-ray powder diffraction 

An Enraf Nonius Delft FR552 Guinier camera was used to obtain x-ray powder 

diffraction patterns. A General Electric XRD-5 generator with an AEG fine focus tube 

and a copper target were used to generate the x-rays. Air-sensitive samples were 

ground thoroughly and then placed between strips of cellophane tape in the drybox. 

Powdered NBS silicon was added as an internal standard. 
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Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) 

This technique was employed to obtain qualitative elemental information on the 

sample. A Cambridge 8-200 Scanning Electron Microscope coupled to a Tracor 

Northern Micro Z-ll Energy Dispersive Spectrometer with a beryllium window was 

used. The samples were placed onto a metal disk backed with double-stick Scotch 

tape and then sputter-coated with gold or carbon. The molybdenum L series and 

sulfur K series peaks fell at almost identical energies and thus were not resolvable 

by this technique. 

BET surface area 

Surface area measurements were obtained with the help of Michael Columbia on 

a Micromeritics 21 OOE Accusorb instrument located in Professor Glenn Schrader's 

group. Krypton gas was used as the adsorbate at liquid nitrogen temperatures and 

the samples were outgassed overnight at about 120°C before analysis. Surface 

areas were calculated from the data by using a least squares fitting program. 

HDS cataiytic activity 

Catalytic activity measurements were obtained with the help of Michael Columbia 

by using a micro fixed-bed reactor located in Professor Glenn Schrader's group. 

Thiophene gas was used as the model sulfur-containing compound. The reactor was 

heated from room temperature to 400*C in a helium stream and, at 30 minute 

intervals, pulses of 2 mol % thiophene in hydrogen were injected into the reactor. 
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The desulfurization products were separated and analyzed by a gas chromatography-

mass spectroscopy system 

Synthetic Procedures 

The general procedure for the preparation of the MogSg cluster unit was similar 

to that discussed previously in Paper 1 for Na2ylVl0gSg_^y(py))(, except for the absence 

of pyridine as a coordinating ligand. These reactions were studied in neat 1 -butanol 

in an attempt to prepare compounds that more closely resembled the ternary Chevrel 

phases. Changes in reaction stoichiometry and conditions were explored in order to 

facilitate the preparation of these ternary molybdenum sulfides. 

Reactions with 1:12:6 stoichiometry 

A typical procedure involved the placement of 4.00 g MogCl̂ g (4 mmol), 2.69 g 

NaSH (48 mmol), and 2.30 g NaOBu (24 mmol) into a reaction flask and the addition 

by syringe of 75 mL of 1-butanol. The mixture was then heated to reflux for a period 

of 2-3 days. After cooling, a blackish solid and faint colored filtrate were separated 

by filtration. The resulting solid was extracted with methanol to remove the sodium 

chloride by-product. After the extraction, no evidence of chlorine was detected by 

chlorine analyses. The presence of sodium was confirmed by using SEM-EDS. Also, 

it was observed that the methanol content was quite variable from one reaction to 

another. The product was found to be insoluble in non-coordinating solvents and 
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amorphous to x-rays. Spectral data (Infrared, Raman, XPS) and elemental analyses 

were obtained. A surface area measurement and HDS catalytic activity study were 

explored. Analyses are given for the product of one preparation - Calc. for 

Nag sMOgSg 4(i\/leOH)4 2= Na, 5.98%; Mo, 53.50%. Found: Na, 5.98%; Mo, 53.43%; 

Na/Mog = 2.80. 

Reactions with 1:11:7 stoichiometry 

Similar reactions to prepare NagyMogSg^y were explored with a different 

stoichiometry. A typical reaction involved the placement of 2.00 g MogCl̂ g (2 m mol), 

1.24 g NaSH (22 mmol), and 1.34 g NaOBu (14 mmol) into a reaction flask and the 

addition by syringe of 60 Ml of 1 -butanol. The resulting reaction product, a blackish 

solid, was extracted with methanol to remove the sodium chloride by-product. After 

the extraction, no evidence of chlorine was detected by chlorine analyses. The 

presence of sodium was confirmed by using SEM-EDS. Spectral data (infrared, 

Raman, XPS) and elemental analyses were obtained. Anal. Found: Mo, 51.99%. 

Reaction of NagyMOgSg^y with n-propylamine 

The sodium molybdenum sulfide compound was readily converted by extraction 

with neat n-propylamine. A typical preparation involved the placement of 0.1-0.3 g 

of the solid onto the frit of an extractor and the distillation of 25-30 mL of n-

propylamine into the receiving flask. After approximately 4 hours of extraction, the 

blackish solid was completely solubilized and provided a dark black/brown solution. 
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After drying under dynamic vacuum, a black, "glassy" solid was obtained. This 

product was identified by its infrared spectrum as IVl0gSg(PrNH2)y. SEM-EDS on the 

product indicated an absence of sodium, thus it was reasoned that the propylamine 

insoluble sodium sulfide by-product remained on the frit after the extraction. 

Cation Exchange Reactions 

Reaction of NagyMOgSg^y with cobalt dichloride 

A general preparation involved the reaction of 1.00 g of the ternary sodium 

molybdenum sulfide with an excess of cobalt dichloride (0.74 g) in methanol (30 mL). 

The reactions were studied at room temperature or under reflux conditions for a 

period of 1 -2 days. Upon filtration, a blackish solid and blue filtrate were observed. 

The solid was extracted with solvent distilled from the filtrate to remove the NaCI by

product and any unreacted CoClg. After drying under dynamic vacuum, a black 

amorphous powder was obtained. The product showed a variable reactivity upon 

contact with air - some samples were highly pyrophoric, while others showed no 

apparent reactivity. SEM-EDS indicated that complete exchange of Co^"*" for Na^ had 

occurred as evidenced by the detection of only cobalt. Infrared spectra, XPS, and 

elemental analyses were obtained. A surface area measurement and HDS catalytic 

activity study were explored. Analyses are given for the product of one preparation -

Gale, for COq gMogSg g(MeOH)3 g: Co, 4.58%; Mo, 55.89%. Found: Co, 4.54%; Mo, 

55.82%; Co/Mog = 0.79. 
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Reaction of NagyMOgSg^y with tin dichloride 

A general preparation involved tlie reaction of 1.00 g of the ternary sodium 

molybdenum sulfide with an excess of tin dichloride (1.07 g) in methanol (30 mL). 

The reactions were studied at room temperature or under reflux conditions for a 

period of 1-2 days. Upon filtration, a blackish solid and light yellow filtrate were 

observed. The solid was extracted with solvent distilled from the filtrate to remove 

the NaCI by-product and any unreacted SnClg. After drying under dynamic vacuum, 

a black amorphous powder was obtained. SEM-EDS indicated that complete 

exchange had occurred as evidenced by the detection of only tin and absence of 

sodium. XPS, infrared, and Raman spectra were obtained. 

Reaction of NagyMOgSg^y with lead dichloride 

A general preparation involved the reaction of 1.00 g of the ternary sodium 

molybdenum sulfide with an excess of lead dichloride (1.56 g) in N,N-dimethyl-

formamide (30 mL). The reactions were studied at room temperature or under reflux 

conditions for a period of 1-2 days. The blackish product was extracted with 

methanol (30 mL) to remove the NaCI by-product and dried in vacuo. If chlorine 

analyses indicated that chlorine was still present, the sample was stirred further with 

dmf to remove any unreacted lead dichloride. The black powder was amorphous and 

highly pyrophoric upon air contact. Infrared and Raman spectra were obtained. 
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Reaction of Na2yM0gSg^y with hoimium trichloride 

A general preparation involved the reaction of 1.00 g of the ternary sodium 

molybdenum sulfide with an excess of hoimium trichloride (1.53 g) in methanol (30 

mL). The reactions were studied at room temperature or under reflux conditions for 

a period of 1-2 days. Upon filtration, a blackish solid and pinkish filtrate were 

observed. The solid was extracted with solvent distilled from the filtrate to remove 

the NaCI by-product and any unreacted HoClg. After drying under dynamic vacuum, 

a black amorphous powder was obtained. The product was highly pyrophoric upon 

air contact. SEM-EDS indicated that exchange had occurred as evidenced by the 

absence of sodium and the detection of hoimium. XPS, infrared, and Raman spectra 

and elemental analyses were obtained. Analyses are given for the product of one 

preparation - Calc. for HoQ glVIOgSg^g(IVIeOH)^^: Ho, 4.77%; Mo, 55.52%. Found: 

Ho, 4.98%; Mo, 55.58%; Ho/Mog = 0.31. 

Thermoiysis Reactions 

The sodium and tin molybdenum sulfides were explored by heating in an attempt 

to prepare the known Chevrel phases. NagyMogSg^y was heated to 800°C in a 

sealed tube for 8 days and resulted in the formation of MoSg as detected by powder 

x-ray diffraction. Likewise, the heating of the tin molybdenum sulfide to 800°C for 4 

days in a sealed tube resulted in the detection of the tin metal and MoSg. Heating 

of the tin molybdenum sulfide under flowing hydrogen gas to about 1000°C resulted 

in the formation of the tin Chevrel phase SnMogSg and molybdenum metal. 
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A Raman spectrum was obtained on the tin molybdenum sulfide heated to 

1000°C under flowing hydrogen gas and compared to a spectrum from the 900°C 

heating of Na2ylVl0gSg^y(py)x and tin metal which produced SnMogSg and MoSg. 
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RESULTS AND DISCUSSION 

Sodium Molybdenum Sulfides 

Compounds of the general formula NagyMogSg^y can be prepared via the 

reaction of MogCI^2< NaSH, and NaOBu in refluxing butanol. The presence or 

absence of a coordinating iigand iike pyridine seems to have iittie effect in these 

types of reactions. Both the reaction in pyridine/butanoi and neat butanol produce 

similar products - blackish amorphous powders which show very little Iigand 

coordination. A comparison of the infrared spectra are shown in Figure 1. For 

Na2yM0gSg^y, a broad band at about 969 cm'̂  indicates the presence of an alcohol 

in this material. This alcohol is most likely occluded methanol which was trapped in 

the compound during the extraction to remove the NaCI reaction by-product. The 

broad Mo-S stretching mode can be evidenced at 381 cm"\ Likewise, the Raman 

spectra (Figure 2) are virtually identical, showing a broad Mo-S band centered at 

about 448 cm"\ Also, the reactions of NagyMogSg+y and the pyridine-deficlent 

compound Na2ylVl0gSg^y(py)^ with n-propylamine produced the same propylamine 

adduct - MogSg{PrNH2)y. The infrared spectra for the products of these reactions 

with n-propylamine are shown in Figure 3. Bands attributable to coordinated 

propylamine are labelled, as well as the broad Mo-S stretching mode centered at 384 

cm~^. XPS data for these materials are listed in Table 1 and an XPS spectrum of the 

sodium molybdenum sulfide compound is shown in Figure 4a. These results indicate 

that the pyridine-deficient ternary compound and NagyMogSg^y are very similar. 
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Figure 1. Infrared spectra (Nujol) for the pyridine-deficient compound NagyMogSg^ (py)^^ (a) and 
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Figure 2. Raman spectra for the pyridine-deficient NagyMogS» ^(py),^ (a) 
and the sodium molybdenum sulfide NagyMogSg^y (bf 
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Figure 3. Infrared spectra (Nujol) for the propylamine adducts produced from the reaction of neat 
propylamine with the pyridine-deficient Na2yMogSQ^y(py)^ (a) and NagyMogSg^y (b) 
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Table 1. X-ray photoefectron spectroscopy (XPS) data^ 

NagyMOgSg^yCpy)^ NagyMOgSg+y COyMOgSg^y^ SHyMOgSg^y® HOgyMogSg^gy 

Mo Sdgg 227.5 227.2 227.9 227.5 227.2 

Mo 3d3^ 230.6 230.4 231.1 230.6 230.5 

S 2s 225.4 225.0 225.8 225.4 225.0 

S 2p3g 161.1 br 160.6 161.3 161.8 br 161.1 br 

S 2p^y2 - 161.8 sh 162.5 sh - -

Values adjusted to C 1s = 284.6 eV; br = broad, sh = shoulder 
^small peaks observed at Mo 228.6 eV and Mo 231.8 eV 
ternary metal data - Sn Sdg^ 487.0 eV, Sn 26^^ 495.4 eV 
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Figure 4. Uncorrected XPS spectra for the sodium (a) and tin (b) molybdenum 
sulfides showing the Mo 3d and S 2s bands 
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Elemental analyses on this ternary sodium molybdenum sulfide result In the 

formulation of this material as Nag gMOgSg 4(MeOH)4 g- The previously reported 

sodium Chevrel phase compounds Na l̂VIOgSg were found over the range x = 1 to 4, 

but they did not contain extra sulfide in the terminal positions of the cluster. 

Similar products were observed upon changing the reaction stoichiometry from 

1:12;6 to 1 ;11:7 (fVIOgCI^g^NaSHiNaOBu). The infrared spectra, Raman spectra, and 

XPS data were almost identical in nature. 

Cation Exchange Reactions 

The sodium in the sodium molybdenum sulfide compounds could be readily 

exchanged with a variety of other metal cations. This exchange occurred by the 

reaction of Na2yM0gS8^.y with the desired metal chloride in methanol or dmf (for lead 

dlchloride) either at room temperature or under reflux conditions to produce the 

cobalt, tin, lead, and holmium ternary molybdenum sulfides. The products were 

amorphous, blackish powders which often showed a high degree of air reactivity -

pyrophoric upon air contact. Complete exchange could be observed by the presence 

of the desired ternary metal and the lack of detectable sodium in the SEM-EDS 

spectrum. The infrared spectra which were obtained are shown In Figure 5. These 

spectra indicate the presence of weak methanol bands around 950-1000 cm'̂  and 

a weak, broad Mo-S stretching mode at 380-400 cm"^. The lead molybdenum sulfide 

compound shows bands for coordinated dimethylformamide at 1630,1103, 893, and 

658 cm'̂ . The Raman spectra shown in Figure 6 for the ternary molybdenum sulfides 
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Figure 5. Infrared spectra (Nujol) for the ternary molybdenum sulfide 
compounds with cobalt (a), tin (b), lead (c), and holmium (d) 
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Figure 6. Raman spectra for the ternary molybdenum sulfide compounds 
with cobalt (a), tin (b), lead (c), and holmium (d) 
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exhibit a broad band centered at about 445-450 cm'\ which is indicative of the 

MOgSg unit. 

The XPS data iisted in Tabie 1 further support the presence of the iVIOgSg unit. 

The XPS spectrum for the tin molybdenum sulfide is shown in Figure 4b. The Mo 

Sdg/g values all lie within the range of 227.2 - 227.9 eV. Likewise, the data for the 

cobalt and tin molybdenum sulfides are very similar to those observed for the Chevrel 

phase compounds - Co^ gMogSg (IVIo Sdg/g, 227.8; S 2p, 161.9 Ev) and SnMogSg 

(iVIo Sdg/g, 228.1; S 2p, 161.7 eV).® 

Elemental analyses on the cobalt and holmium molybdenum sulfides result in the 

formulation of C0Q gA/l0gSg g(IVIe0H)g g and HoQ glVIOgSg^(IVIeOH)^^ for these 

materials. These values Indicate that the cation exchanged ternary molybdenum 

sulfides contain much less ternary metal than the corresponding Chevrel phases. 

Thermolysis Reactions 

Preliminary attempts to prepare the Chevrel phases by heating of the sodium and 

tin molybdenum sulfides were explored. Direct heating of either compound to 800*C 

in a sealed tube resulted in oxidation or disproportlonation of the cluster unit and the 

detection of MoSg by powder x-ray diffraction. However, heating to about 1000°C 

under a reducing hydrogen gas flow produced the desired tin Chevrel phase along 

with molybdenum metal. These results indicate the necessity of having a reducing 

atmosphere present in the reactions, while lower temperature heating should aid in 

preparing single phase Chevrel compounds. 
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The Raman spectrum for the heating of tin molybdenum sulfide under a reducing 

hydrogen atmosphere is shown in Figure 7a and compared to the spectrum from the 

heating to 900°C of Na2ylVl0gSg^y(py)x and tin metal which contains the tin Chevrel 

phase and MoSg (Figure 6b). Both spectra show that the tin Chevrel phase 

compound, Snh^OgSg, exhibits a broad band centered at about 445 cm~^ which is also 

seen in the Raman spectra of the ternary molybdenum sulfides. Pronounced MoSg 

bands are observed in Figure 7b at 405 cm"^ and 380 cm"^ which has been identified 

as the Mo-S A^g and Egg^ modes.^^ 

Thermogravimetric analysis (TG/DTA) was explored for several samples, 

however, problems with oxygen contamination were evidenced by an initial increase 

in weight and the detection of MoOg in the powder x-ray diffraction patterns of these 

TG/DTA products. 

HDS Catalytic Activity 

Preliminary catalytic activity measurements were made on the sodium and cobalt 

molybdenum sulfide compounds. These materials exhibited higher surface areas and 

thiophene conversion percentages than any reported Chevrel phase compounds, 

however, the HDS activities were not as high as any of the Chevrel phases. The 

results of this study are tabulated in Table 2 and are compared with several Chevrel 

phase compounds and the unsupported catalyst "Co-Mo-S". 

The lower HDS activity could be the result of ternary metal cation size. McCarty 

et ai previously reported that the small ternary metal cation Chevrel phases exhibited 
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Figure 7. Raman spectra for the tin molybdenum sulfide compound heated to 
1000X under flowing hydrogen gas (a) and the pyridine-deficient 
compound with tin metai heated to QOCC in a sealed tube (b). Both 
spectra exhibit a broad band centered at about 445 cm'\ while 
sharp bands for MoSg can be observed at 405 and 380 cm""* in (b). 
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2. Thiophene hydrodesuKurization (HDS) activities after reaction at 400°C '̂' 

Surface area (m^/g) % thiophene conversion HDS Rate (xlO® mol/m^s) 

NagyMOgSg^y 4.30 1.19 0.27 

COyMOgSg^y 6.95 3.67 0.52 

Ho^2^6^8 0.58 2.20 11.23 

PbMOggSg 0.40 1.28 6.68 

SnMOg 2^8 0.39 1.72 3.24 

Co.| gMogSg 0.10 0.47 1.02 

COQ 25"MO-S 10.83 0.77 2.92 

^Chevrel phases and COq 25-Mo-S data are from reference 6 
^Sodium compound heated for 4 hours, cobalt compound heated for 5 hours, remaining compounds 

were heated for 10 hours 



www.manaraa.com

219 

lower activity than those with large cations.®'® It was reasoned that the large cations 

have little mobility which results in structural stability and thus catalytic stability. 

However, the high mobility of the small cations, as observed in their high ion 

conductivity, allows these cations to "retreat" from the surface into the bulk structure. 

This movement makes the material less catalytically active and opens sites to surface 

oxidation and subsequent destabilization by forming IVIoSg. 

Further support for this reasoning can be observed in the XPS spectra for the 

cobalt molybdenum sulfide as prepared and after the HDS experiment (Figure 8). 

The initial cobalt compound shows the distinctive Mo Sdg/g peak at 227.9 eV which 

is supportive of the MogSg cluster unit, as well as smaller peaks due to surface 

oxidation. After hydrodesulfurization, the largest Mo Sdg/g peak resides at 228.5 eV 

which indicates oxidation of the material's surface (MoOg-like binding energy). A 

much smaller peak is also observed at 227.7 eV (Mo Sdg/g), the normal binding 

energy for the cobalt compound. The cobalt molybdenum sulfide material shows only 

a trace peak for cobalt at 778 eV after HDS which further supports only a very 

small amount of cobalt remaining on the surface. Similar observations have been 

reported for the cobalt Chevrel phase Co^ gMogSg.® 
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Figure 8. Uncorrected XPS spectra for the cobalt molybdenum sulfide as 
prepared (a) and the product after hydrodesulfurization (b). The 
spectra show Mo 3d and S 2s bands for the MogSg cluster unit as 
well as surface oxidation of the material. 
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CONCLUSIONS 

This paper describes new preparative routes to ternary molybdenum sulfides by 

cation exchange reactions with sodium molybdenum sulfide. A wide range of 

compounds have been prepared with the ternary metals of cobalt, tin, lead, and 

holmium. These compounds are similar to the Chevrel phases in that they both 

contain MOgSg cluster units. Raman spectroscopy and XPS support the presence of 

the cluster units. These MogSg units are not as strongly interconnected at the lower 

preparation temperatures which allows for the extraction of individual clusters via the 

reaction with propylamine as evidenced for the sodium molybdenum sulfide. 

Elemental analyses have indicated that the cobalt and holmium molybdenum 

sulfides contain much less ternary metal than what is evidenced for the corresponding 

Chevrel phases. These compounds are formulated as Cog gMOgSg g(MeOH)3 g and 

Hoq gMogSg 45(MeOH)4 4. The presence of the ternary metal and absence of sodium 

has been confirmed by XPS and SEM-EDS, while methanol is detected in the infrared 

spectra of these products. 

The tin Chevrel phase, SnMogSg, has been prepared by the high temperature 

heating of the tin molybdenum sulfide in the presence of flowing hydrogen gas. 

Direct heating of the same material in a sealed tube leads to the detection of M0S2 

which indicates cluster degradation either by oxidation or disproportionation. 

Hydrodesulfurization (HDS) studies have been explored to discover if the ternary 

molybdenum sulfides show similar activities to the Chevrel phases. Preliminary 
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studies on tlie sodium and cobalt compounds indicate that these materials possess 

larger surface areas and thiophene conversion percentages than the corresponding 

Chevrel phases, however, the ternary molybdenum sulfides show a slower HDS rate. 

The small cation Chevrel phases were previously found to exhibit lower HDS rates, 

which was explained by the movement of the cations away from the surface and 

subsequent surface oxidation. Similar observations were noted for the cobalt 

molybdenum sulfides. XPS spectra on the solids after HDS showed the presence of 

surface oxides and very little cobalt was detected on the surface. Distinct differences 

should be observed with the larger cation ternary molybdenum sulfides since these 

cations are not considered to be very mobile. 

Raman spectroscopy has developed into an important tool for studying the 

ternary molybdenum sulfides. A broad, yet distinctive, Mo-S band is always detected 

at about 445-450 cm"^. Further study on samples containing Snh/IOgSg have also 

shown that this Chevrel phase produces a similar band in the Raman spectrum. 

Samples containing M0S2, as detected in the powder x-ray diffraction patterns, show 

distinct Raman bands that are separated from the MogSg cluster Mo-S band. 

Further development is needed on these ternary molybdenum sulfides, especially, 

better characterization of the existing compounds and exploration into the preparation 

of new compounds. Likewise, catalytic activity studies on the reported tin, lead, and 

holmium molybdenum sulfides are of great interest in order to discover if these large 

cation compounds show similar HDS properties to the Chevrel phases. Also, 

research is needed to better understand the conditions necessary to convert these 
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materials into single phase Chevrel compounds via the hydrogen reduction process. 

Further reactions should be explored in order to increase the metal cation 

concentration in the ternary molybdenum sulfides prepared by cation exchange. 

Finally, other routes to these ternary molybdenum sulfides should be considered. 

Possible ideas include the reaction of the propylamine adduct with sodium 

hydrosulfide or sodium borohydride in solution or by sealed tube heating. A metal or 

metal halide could be added to the reaction mixture. Higher temperature reduction 

in hydrogen gas would probably be needed to form the desired products. 

Further methods of characterization like EXAFS or diffuse scattering should be 

explored for these ternary molybdenum sulfides, especially as they compare to the 

Chevrel phase compounds. Also, Raman spectra should be collected for MogSg and 

other Chevrel phases to verify that this technique can detect the Mo-S stretch for 

thèse compounds. Furthermore, a variable temperature x-ray diffraction study could 

prove interesting in the detection of the temperature region where these ternary 

molybdenum sulfides are converted to the Chevrel phases. 
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GENERAL SUMMARY 

The goal of this dissertation has been to develop and characterize IVIOgSgLg 

cluster complexes as precursors for the low temperature synthesis of the Chevrel 

phase compounds, M^MogSg. Subsequently, deligation of these cluster complexes 

has been explored In order to prepare the desired Chevrel phases. In conjunction, 

a new synthetic route for the preparation of ternary molybdenum sulfides has been 

discovered. Cation exchange reactions with NagyMOgSg^y have resulted in the 

formation of materials that are related to the Chevrel phase compounds. 

An improved method for the preparation of Na2yMogSg^y(py)ĵ  was discovered by 

the reaction of MogCl̂ g with higher stoichiometric ratios of sodium hydrosulfide and 

sodium butoxide in 1-butanol/pyridine. This pyrldine-deficient compound was quite 

soluble in neat pyridine (py) and resulted in the formation of the crystalline 

hexapyridine complex. This adduct exhibited two different crystal modifications which 

were structurally characterized as the triclinic MOgSg(py)g-1.65py and cubic 

MOeS8(py)g-2py. 

Further reaction of the pyridine-deficient compound with n-propylamine (PrNHg) 

resulted in the formation of the reactive, ligand-deficient MogSQ(PrNH2)y complex. 

Subsequent llgand exchange reactions with pyrrolidine (pyrr) and piperidine (pip) 

produced the tetragonal MogSg(pyrr)g-1pyrr and MogSg(pip)g7pip complexes. 

Solubility of the piperidine adduct allowed for two-dimensional NMR studies and 
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proton assignments. Tlie structural solution showed that the piperidine ligands were 

coordinated via equatorial positions on the N-atom with respect to chair conformation. 

Spectroscopic studies have resulted in the observation of characteristic bands for 

the Mo3Sg cluster unit. Infrared bands can be noted for the Mo-S stretching mode 

at 378-392 cm"\ Sharp Raman bands for the Mo-S A^g mode are observed at 408-

415 cm*^ in the crystalline complexes and, upon ligand loss, a broad band is found 

at 445-450 cm"^. XPS bands are observed at 227.2-227.8 eV (Mo3d5/2), 230.4-230.9 

Ev (IVIo3d3/2), 224.7-225.4 eV (S2s), 160.3-161.0 eV {S2ps,^, and 161.4-162.1 eV 

(S2pi/2). Structural determinations for the nitrogen-donor complexes exhibit Mo-Mo 

and Mo-S bond distances which are nearly identical to previous complexes with 

sulfur-or phosphorus-donor ligands. However, these nitrogen-donor ligands show 

much weaker bonding to the cluster units and thus were excellent candidates for 

deligation studies to remove the ligands and form the binary Chevrel phase MogSg. 

Deiigation studies were explored by a variety of methods including direct heating 

of the compounds, reactions with tin and lead metal, thermolysis reactions in the 

presence of ammonia gas, and solution reactions with strong acids. Direct 

thermolysis reactions resulted in incomplete deligation and ligand fragmentation at 

temperatures above 300°C. Under dynamic vacuum conditions, this fragmentation 

was indicated by the observation of an increase in pressure at these temperatures. 

This pressure increase must have resulted from the production of volatile gases like 

methane or hydrogen which would not be condensed in the liquid nitrogen trap. 
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The reaction of the pyridine-deficient compound with the ternary metals resulted 

in the formation of the desired Chevrel phases along with an MoSg impurity phase. 

Heating of the materials to 700°C under dynamic vacuum produced an amorphous 

material whose XPS spectrum indicated the compound was Chevrel phase-like. The 

Chevrel phase compounds could be produced by further heating to 900°C. 

Thermolysis reactions in the presence of ammonia gas have resulted in what 

appears to be complete deligation of the propylamine adduct at much lower 

temperatures than observed by direct heating under dynamic vacuum. The infrared 

spectrum after heating at 150°C in ammonia showed the absence of propylamine, 

while distinct propylamine bands were obsen/ed for the sample heated in vacuo. 

Solution reactions in the presence of strong acids were studied in an attempt to 

protonate the ligands and thus make them better leaving groups. Reactions In 

trifluoromethanesulfonic acid led to removal of the ligands; however, coordination of 

the triflate anion was observed. Reactions with tetrafluoroboric acid/diethyl ether 

complex in diethyl ether indicated coordination of BFg or BF '̂. Reactions in methanol 

removed the propylamine ligands and the infrared spectra showed only methanol 

coordination, yet the analyses do not clearly indicate complete deligation. 

A new preparative route has been developed for ternary molybdenum sulfides. 

Cation exchange reactions with sodium molybdenum sulfide were used to prepare the 

cobalt, tin, lead, and holmium compounds. Raman and XPS spectroscopy have 

indicated that these compounds contain the IVIOgSg cluster units. These cluster units 
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are not as strongly interconnected as ttie Chevrel pliases at these lower preparation 

temperatures, which allows for the extraction of individual clusters via reaction with 

propylamine to form the ligand-deficient IVl0gSg(PrNH2)y complex. 

Elemental analyses have indicated that these complexes contain much less 

ternary metal than is observed for the Chevrel phases. The presence of the ternary 

metal and absence of sodium was confirmed by SEM-EDS and XPS. The tin Chevrel 

phase can be prepared by the high temperature heating of the tin molybdenum 

sulfide in the presence of flowing hydrogen gas. Furthermore, this product shows the 

broad, yet characteristic, band at about 445-450 cm"^ in the Raman spectrum. Direct 

heating of the same material in a sealed tube leads to the formation of MoSg and 

indicates cluster degradation. Preliminary hydrodesulfurization (HDS) studies on the 

sodium and cobalt compounds showed that these materials possess larger surface 

areas and thiophene conversion percentages than the Chevrel phases; however, 

these ternary molybdenum sulfides exhibit lower HDS rates. 
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